IDEAS home Printed from https://ideas.repec.org/a/eco/journ1/2015-02-08.html
   My bibliography  Save this article

Asymmetric GARCH Value-at-Risk over MSCI in Financial Crisis

Author

Listed:
  • Han-Ching Huang

    (Department of Finance, Chung Yuan Christian University, Taoyuan City, Taiwan 32023, R.O.C,)

  • Yong-Chern Su

    (Department of Finance, National Taiwan University, Taiwan,)

  • Jen-Tien Tsui

    (Department of Finance, National Taiwan University, Taiwan.)

Abstract

This paper uses four asymmetric generalized autoregressive conditional heteroskedasticity (GARCH) models, which are GJR-GARCH, NA-GARCH, Threshold GARCH (T-GARCH), and AV-GARCH to compare their performance on value-at-risk (VaR) forecasting to the symmetric GARCH model. In addition, we adopt four different mean equations which are autoregressive moving average (ARMA[1,1]), AR(1), MA(1), and in-mean to find out a more appropriate GARCH method in estimating VaR of MSCI World Index in financial crisis. We pick up 900 daily information of MSCI World Index from 2006 to 2009. We find that GARCH-in-mean (GARCHM[1,1]), MA-GARCHM(1,1), AR(1)-T-GARCHM(1,1), and ARMA(1,1)-TGARCHM( 1,1) outperform other models in terms of number of violations. ARMA(1,1)-T-GARCHM(1,1) performs the best in terms of mean violation range, mean violation percentage, aggregate violation range, aggregate violation percentage, and max violation range. Other than T-GARCH models, number of violations decrease by using in-mean or MA(1) mean equation. Generally speaking, the better the performance in terms of violation, the larger the capital requirement is needed.

Suggested Citation

  • Han-Ching Huang & Yong-Chern Su & Jen-Tien Tsui, 2015. "Asymmetric GARCH Value-at-Risk over MSCI in Financial Crisis," International Journal of Economics and Financial Issues, Econjournals, vol. 5(2), pages 390-398.
  • Handle: RePEc:eco:journ1:2015-02-08
    as

    Download full text from publisher

    File URL: http://www.econjournals.com/index.php/ijefi/article/download/1070/pdf
    Download Restriction: no

    File URL: http://www.econjournals.com/index.php/ijefi/article/view/1070/pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    2. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value‐at‐Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    3. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    4. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    5. Y. C. Su & H. C. Huang & Y. J. Lin, 2011. "GJR-GARCH model in value-at-risk of financial holdings," Applied Financial Economics, Taylor & Francis Journals, vol. 21(24), pages 1819-1829, December.
    6. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    7. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    8. repec:bla:jfinan:v:44:y:1989:i:5:p:1115-53 is not listed on IDEAS
    9. Zouheir Mighri & Faysal Mansouri, 2013. "Dynamic Conditional Correlation Analysis of Stock Market Contagion: Evidence from the 2007-2010 Financial Crises," International Journal of Economics and Financial Issues, Econjournals, vol. 3(3), pages 637-661.
    10. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiwen Cui & Lei Li & Zijie Tang, 2021. "Risk Analysis of China Stock Market During Economic Downturns–Based on GARCH-VaR and Wavelet Transformation Approaches," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 11(4), pages 322-336, April.
    2. Melike Bildirici & Işıl Şahin Onat & Özgür Ömer Ersin, 2023. "Forecasting BDI Sea Freight Shipment Cost, VIX Investor Sentiment and MSCI Global Stock Market Indicator Indices: LSTAR-GARCH and LSTAR-APGARCH Models," Mathematics, MDPI, vol. 11(5), pages 1-27, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
    2. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    3. Subrata Roy, 2020. "Stock Market Asymmetry and Investors’ Sensation on Prime Minister: Indian Evidence," Jindal Journal of Business Research, , vol. 9(2), pages 148-161, December.
    4. Subrata ROY, 2021. "Volatility Forecasting, Market Efficiency and Effect of Recession of SRI Indices," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(2(627), S), pages 259-284, Summer.
    5. Dimitrios Koutmos, 2015. "Is there a Positive Risk†Return Tradeoff? A Forward†Looking Approach to Measuring the Equity Premium," European Financial Management, European Financial Management Association, vol. 21(5), pages 974-1013, November.
    6. Y. C. Su & H. C. Huang & Y. J. Lin, 2011. "GJR-GARCH model in value-at-risk of financial holdings," Applied Financial Economics, Taylor & Francis Journals, vol. 21(24), pages 1819-1829, December.
    7. Harry-Paul Vander Elst, 2015. "FloGARCH: Realizing Long Memory and Asymmetries in Returns Valitility," Working Papers ECARES ECARES 2015-12, ULB -- Universite Libre de Bruxelles.
    8. Koutmos, Gregory, 1998. "Asymmetries in the Conditional Mean and the Conditional Variance: Evidence From Nine Stock Markets," Journal of Economics and Business, Elsevier, vol. 50(3), pages 277-290, May.
    9. Issler, João Victor, 1999. "Estimating and forecasting the volatility of Brazilian finance series using arch models (Preliminary Version)," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 347, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    10. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
    11. Bekaert, Geert & Harvey, Campbell R., 1997. "Emerging equity market volatility," Journal of Financial Economics, Elsevier, vol. 43(1), pages 29-77, January.
    12. João Caldeira & Guilherme Moura & André Santos, 2015. "Measuring Risk in Fixed Income Portfolios using Yield Curve Models," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 65-82, June.
    13. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    14. Bucevska Vesna, 2013. "An Empirical Evaluation of GARCH Models in Value-at-Risk Estimation: Evidence from the Macedonian Stock Exchange," Business Systems Research, Sciendo, vol. 4(1), pages 49-64, March.
    15. Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
    16. Bouoiyour, Jamal & Selmi, Refk, 2012. "Modeling exchange volatility in Egypt using GARCH models," MPRA Paper 49131, University Library of Munich, Germany, revised Mar 2013.
    17. Carnero, María Ángeles, 2001. "Outliers and conditional autoregressive heteroscedasticity in time series," DES - Working Papers. Statistics and Econometrics. WS ws010704, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. El Bouhadi, Abdelhamid & Achibane, Khalid, 2009. "The Predictive Power of Conditional Models: What Lessons to Draw with Financial Crisis in the Case of Pre-Emerging Capital Markets?," MPRA Paper 19482, University Library of Munich, Germany.
    19. Auer, Benjamin R. & Rottmann, Horst, 2014. "Is there a Friday the 13th effect in emerging Asian stock markets?," Journal of Behavioral and Experimental Finance, Elsevier, vol. 1(C), pages 17-26.
    20. Radovan Parrák, 2013. "The Economic Valuation of Variance Forecasts: An Artificial Option Market Approach," Working Papers IES 2013/09, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Aug 2013.

    More about this item

    Keywords

    Market Risk; Value-at-Risk; GARCH; MSCI; Financial Crisis;
    All these keywords.

    JEL classification:

    • G2 - Financial Economics - - Financial Institutions and Services
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eco:journ1:2015-02-08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ilhan Ozturk (email available below). General contact details of provider: http://www.econjournals.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.