IDEAS home Printed from https://ideas.repec.org/a/taf/apfiec/v21y2011i24p1819-1829.html
   My bibliography  Save this article

GJR-GARCH model in value-at-risk of financial holdings

Author

Listed:
  • Y. C. Su
  • H. C. Huang
  • Y. J. Lin

Abstract

In this study, we introduce an asymmetric Generalized Autoregressive Conditional Heteroscedastic (GARCH) model, Glosten, Jagannathan and Runkle-GARCH (GJR-GARCH), in Value-at-Risk (VaR) to examine whether or not GJR-GARCH is a good method to evaluate the market risk of financial holdings. Because of lacking the actual daily Profit and Loss (P&L) data, portfolios A and B, representing FuBon and Cathay financial holdings are simulated. We take 400 observations as sample group to do the backward test and use the rest of the observations to forecast the change of VaR. We find GJR-GARCH works very well in VaR forecasting. Nonetheless, it also performs very well under the symmetric GARCH-in-Mean (GARCH-M) model, suggesting no leverage effect exists. Further, a 5-day moving window is opened to update parameter estimates. Comparing the results under different models, we find that the model is more accurate by updating parameter estimates. It is a trade-off between violations and capital charges.

Suggested Citation

  • Y. C. Su & H. C. Huang & Y. J. Lin, 2011. "GJR-GARCH model in value-at-risk of financial holdings," Applied Financial Economics, Taylor & Francis Journals, vol. 21(24), pages 1819-1829, December.
  • Handle: RePEc:taf:apfiec:v:21:y:2011:i:24:p:1819-1829
    DOI: 10.1080/09603107.2011.595677
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/09603107.2011.595677
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09603107.2011.595677?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
    2. Jeremy Berkowitz & James O'Brien, 2002. "How Accurate Are Value‐at‐Risk Models at Commercial Banks?," Journal of Finance, American Finance Association, vol. 57(3), pages 1093-1111, June.
    3. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    4. Hui Li & R. P. Berrens & A. K. Bohara & H. C. Jenkins-Smith & C. L. Silva & L. Weimer, 2004. "Telephone versus Internet samples for a national advisory referendum: are the underlying stated preferences the same?," Applied Economics Letters, Taylor & Francis Journals, vol. 11(3), pages 173-176.
    5. Yamai, Yasuhiro & Yoshiba, Toshinao, 2005. "Value-at-risk versus expected shortfall: A practical perspective," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 997-1015, April.
    6. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
    7. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    8. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    9. Enrique Sentana, 1995. "Quadratic ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(4), pages 639-661.
    10. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    11. Timotheos Angelidis & Alexandros Benos, 2006. "Liquidity adjusted value-at-risk based on the components of the bid-ask spread," Applied Financial Economics, Taylor & Francis Journals, vol. 16(11), pages 835-851.
    12. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    13. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boris Cournède & Oliver Denk & Peter Hoeller, 2015. "Finance and Inclusive Growth," OECD Economic Policy Papers 14, OECD Publishing.
    2. Alexander, Carol & Kaeck, Andreas & Sumawong, Anannit, 2019. "A parsimonious parametric model for generating margin requirements for futures," European Journal of Operational Research, Elsevier, vol. 273(1), pages 31-43.
    3. Han-Ching Huang & Yong-Chern Su & Jen-Tien Tsui, 2015. "Asymmetric GARCH Value-at-Risk over MSCI in Financial Crisis," International Journal of Economics and Financial Issues, Econjournals, vol. 5(2), pages 390-398.
    4. Gong, Xiaoli & Zhuang, Xintian, 2017. "Measuring financial risk and portfolio reversion with time changed tempered stable Lévy processes," The North American Journal of Economics and Finance, Elsevier, vol. 40(C), pages 148-159.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    2. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    3. Carnero, María Ángeles, 2001. "Outliers and conditional autoregressive heteroscedasticity in time series," DES - Working Papers. Statistics and Econometrics. WS ws010704, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Lundblad, Christian, 2007. "The risk return tradeoff in the long run: 1836-2003," Journal of Financial Economics, Elsevier, vol. 85(1), pages 123-150, July.
    5. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    6. David McMillan & Alan Speight, 2003. "Asymmetric volatility dynamics in high frequency FTSE-100 stock index futures," Applied Financial Economics, Taylor & Francis Journals, vol. 13(8), pages 599-607.
    7. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
    8. Teräsvirta, Timo, 2006. "An introduction to univariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 646, Stockholm School of Economics.
    9. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    10. João Caldeira & Guilherme Moura & André Santos, 2015. "Measuring Risk in Fixed Income Portfolios using Yield Curve Models," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 65-82, June.
    11. Margiora, Philippa & Panaretos, John, 2001. "Autoregressive Conditional Heteroskedasticity Models and the Dynamic Structure of the Athens Stock Exchange," MPRA Paper 6358, University Library of Munich, Germany.
    12. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    13. Geoffrey F. Loudon & Wing H. Watt & Pradeep K. Yadav, 2000. "An empirical analysis of alternative parametric ARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 117-136.
    14. Bohl, Martin T. & Brzeszczynski, Janusz & Wilfling, Bernd, 2009. "Institutional investors and stock returns volatility: Empirical evidence from a natural experiment," Journal of Financial Stability, Elsevier, vol. 5(2), pages 170-182, June.
    15. Yi-Ting Chen, 2008. "A unified approach to standardized-residuals-based correlation tests for GARCH-type models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 111-133.
    16. Saker Sabkha & Christian de Peretti, 2018. "On the performances of Dynamic Conditional Correlation models in the Sovereign CDS market and the corresponding bond market," Working Papers hal-01710398, HAL.
    17. Gerrit Reher & Bernd Wilfling, 2016. "A nesting framework for Markov-switching GARCH modelling with an application to the German stock market," Quantitative Finance, Taylor & Francis Journals, vol. 16(3), pages 411-426, March.
    18. Saker Sabkha & Christian de Peretti, 2022. "On the performances of Dynamic Conditional Correlation models in the Sovereign CDS market and the corresponding bond market," Post-Print hal-01710398, HAL.
    19. Carol Alexander & Emese Lazar & Silvia Stanescu, 2010. "Analytic Moments for GARCH Processes," ICMA Centre Discussion Papers in Finance icma-dp2011-07, Henley Business School, University of Reading, revised Apr 2011.
    20. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apfiec:v:21:y:2011:i:24:p:1819-1829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAFE20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.