IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-13-00844.html
   My bibliography  Save this article

The Great East Japan Earthquake and Stock Prices

Author

Listed:
  • Jacques Jaussaud

    (University of Pau et Pays de l''Adour)

  • Sophie Nivoix

    (University of poitiers, France)

  • Serge Rey

    (CATT-UNIV PAU & PAYS ADOUR)

Abstract

The Great East Japan Earthquake of March 11, 2011, which led to a massive tsunami and the nuclear accident at Fukushima, moved Japanese authorities to close most of the country's nuclear reactors for inspection (only 2 of 54 total currently are working), as well as to reassess its national energy policy. This article investigates the volatility of stock prices before and after the disaster. The evolution of stock prices of electric utility companies differs greatly, compared with those of firms in other industries.

Suggested Citation

  • Jacques Jaussaud & Sophie Nivoix & Serge Rey, 2015. "The Great East Japan Earthquake and Stock Prices," Economics Bulletin, AccessEcon, vol. 35(2), pages 1237-1261.
  • Handle: RePEc:ebl:ecbull:eb-13-00844
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/Pubs/EB/2015/Volume35/EB-15-V35-I2-P127.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Donald R. Davis & David E. Weinstein, 2008. "A Search For Multiple Equilibria In Urban Industrial Structure," Journal of Regional Science, Wiley Blackwell, vol. 48(1), pages 29-65, February.
    2. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
    3. Dueker, Michael J, 1997. "Markov Switching in GARCH Processes and Mean-Reverting Stock-Market Volatility," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 26-34, January.
    4. Monica Billio & Massimiliano Caporin, 2005. "Multivariate Markov switching dynamic conditional correlation GARCH representations for contagion analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 14(2), pages 145-161, November.
    5. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    6. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    9. Marcucci Juri, 2005. "Forecasting Stock Market Volatility with Regime-Switching GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-55, December.
    10. De Bondt, Werner F M & Thaler, Richard, 1985. "Does the Stock Market Overreact?," Journal of Finance, American Finance Association, vol. 40(3), pages 793-805, July.
    11. Peter Gordon & James E. Moore & Harry W. Richardson & Masanobu Shinozuka & Donghwan An & Sungbin Cho, 2004. "Earthquake Disaster Mitigation for Urban Transportation Systems: An Integrated Methodology that Builds on the Kobe and Northridge Experiences," Advances in Spatial Science, in: Yasuhide Okuyama & Stephanie E. Chang (ed.), Modeling Spatial and Economic Impacts of Disasters, chapter 11, pages 205-232, Springer.
    12. Rey, Clément & Rey, Serge & Viala, Jean-Renaud, 2014. "Detection of high and low states in stock market returns with MCMC method in a Markov switching model," Economic Modelling, Elsevier, vol. 41(C), pages 145-155.
    13. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    14. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    15. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    16. Michael Wong, 1997. "Abnormal Stock Returns Following Large One-day Advances and Declines: Evidence from Asia-Pacific Markets," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 4(2), pages 171-177, May.
    17. Robin L. Lumsdaine & David H. Papell, 1997. "Multiple Trend Breaks And The Unit-Root Hypothesis," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 212-218, May.
    18. Ziobrowski, Alan J. & Cheng, Ping & Boyd, James W. & Ziobrowski, Brigitte J., 2004. "Abnormal Returns from the Common Stock Investments of the U.S. Senate," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(4), pages 661-676, December.
    19. Donald R. Davis & David E. Weinstein, 2002. "Bones, Bombs, and Break Points: The Geography of Economic Activity," American Economic Review, American Economic Association, vol. 92(5), pages 1269-1289, December.
    20. De Bondt, Werner F M & Thaler, Richard H, 1987. "Further Evidence on Investor Overreaction and Stock Market Seasonalit y," Journal of Finance, American Finance Association, vol. 42(3), pages 557-581, July.
    21. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    22. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    23. Clément Rey & Serge Rey & Jean-Renaud Viala, 2014. "Detection of high and low states in stock market returns with MCMC method in a Markov switching model," Post-Print hal-01885287, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khalid Khan & Javier Cifuentes-Faura & Muhammad Shahbaz, 2024. "Do earthquakes shake the stock market? Causal inferences from Turkey’s earthquake," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-19, December.
    2. Christian F. Durach & Tomas Repasky & Frank Wiengarten, 2023. "Patterns in firms’ inventories and flexibility levels after a low‐probability, high‐impact disruption event: Empirical evidence from the Great East Japan Earthquake," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1705-1723, June.
    3. Mohamed El Abdellaoui & Gilles Pache, 2019. "Effects of disruptive events within the supply chain on perceived logistics performance," Economics Bulletin, AccessEcon, vol. 39(1), pages 41-54.
    4. Harada, Kimie & Okimoto, Tatsuyoshi, 2021. "The BOJ's ETF purchases and its effects on Nikkei 225 stocks," International Review of Financial Analysis, Elsevier, vol. 77(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, December.
    2. Narayan, Paresh Kumar & Liu, Ruipeng & Westerlund, Joakim, 2016. "A GARCH model for testing market efficiency," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 41(C), pages 121-138.
    3. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    4. Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
    5. Rey, Clément & Rey, Serge & Viala, Jean-Renaud, 2014. "Detection of high and low states in stock market returns with MCMC method in a Markov switching model," Economic Modelling, Elsevier, vol. 41(C), pages 145-155.
    6. Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
    7. Charlot, Philippe & Marimoutou, Vêlayoudom, 2014. "On the relationship between the prices of oil and the precious metals: Revisiting with a multivariate regime-switching decision tree," Energy Economics, Elsevier, vol. 44(C), pages 456-467.
    8. Abounoori, Esmaiel & Elmi, Zahra (Mila) & Nademi, Younes, 2016. "Forecasting Tehran stock exchange volatility; Markov switching GARCH approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 264-282.
    9. Shi, Yanlin & Ho, Kin-Yip & Liu, Wai-Man, 2016. "Public information arrival and stock return volatility: Evidence from news sentiment and Markov Regime-Switching Approach," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 291-312.
    10. Lin, Yu & Xiao, Yang & Li, Fuxing, 2020. "Forecasting crude oil price volatility via a HM-EGARCH model," Energy Economics, Elsevier, vol. 87(C).
    11. Sajjad Rasoul & Coakley Jerry & Nankervis John C, 2008. "Markov-Switching GARCH Modelling of Value-at-Risk," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(3), pages 1-31, September.
    12. E. Otranto, 2015. "Adding Flexibility to Markov Switching Models," Working Paper CRENoS 201509, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    13. Keunbae Ahn, 2021. "Predictable Fluctuations in the Cross-Section and Time-Series of Asset Prices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2021, January-A.
    14. Altaf Muhammad & Zhang Shuguang, 2015. "Impact Of Structural Shifts on Variance Persistence in Asymmetric Garch Models: Evidence From Emerging Asian and European Markets," Romanian Statistical Review, Romanian Statistical Review, vol. 63(1), pages 57-70, March.
    15. Ardia, David & Hoogerheide, Lennart F., 2010. "Efficient Bayesian estimation and combination of GARCH-type models," MPRA Paper 22919, University Library of Munich, Germany.
    16. Kei Nakagawa & Yusuke Uchiyama, 2020. "GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio," Mathematics, MDPI, vol. 8(11), pages 1-12, November.
    17. Gadea, Maria Dolores & Sabate, Marcela & Serrano, Jose Maria, 2004. "Structural breaks and their trace in the memory: Inflation rate series in the long-run," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 14(2), pages 117-134, April.
    18. Henryk Gurgul & Robert Syrek, 2023. "Contagion between selected European indexes during the Covid-19 pandemic," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(1), pages 47-59.
    19. Carlos Capistrán & Manuel Ramos‐Francia, 2009. "Inflation Dynamics In Latin America," Contemporary Economic Policy, Western Economic Association International, vol. 27(3), pages 349-362, July.
    20. Pedro Nielsen Rotta & Pedro L. Valls Pereira, 2016. "Analysis of contagion from the dynamic conditional correlation model with Markov Regime switching," Applied Economics, Taylor & Francis Journals, vol. 48(25), pages 2367-2382, May.

    More about this item

    Keywords

    stock market; Japan; risk; volatility; earthquake; electric utility companies;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-13-00844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.