IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-11-00408.html
   My bibliography  Save this article

A new axiomatization of the Shapley value under interval uncertainty

Author

Listed:
  • Yan-an Hwang

    (Department of Applied Mathematics, National Dong Hwa University)

  • Ming-chuan Chen

    (Department of Applied Mathematics, National Dong Hwa University)

Abstract

In the framework of interval games, we show that the Shapley value is the unique solution satisfying efficiency, symmetry and coalitional strategic equivalence.

Suggested Citation

  • Yan-an Hwang & Ming-chuan Chen, 2012. "A new axiomatization of the Shapley value under interval uncertainty," Economics Bulletin, AccessEcon, vol. 32(1), pages 799-810.
  • Handle: RePEc:ebl:ecbull:eb-11-00408
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/Pubs/EB/2012/Volume32/EB-12-V32-I1-P74.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brânzei, R. & Dimitrov, D.A. & Tijs, S.H., 2002. "Convex Fuzzy Games and Participation Monotonic Allocation Schemes," Discussion Paper 2002-13, Tilburg University, Center for Economic Research.
    2. R. Branzei & O. Branzei & S. Alparslan Gök & S. Tijs, 2010. "Cooperative interval games: a survey," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(3), pages 397-411, September.
    3. Dinko Dimitrov & Stef Tijs & Rodica Branzei, 2003. "Shapley-like values for interval bankruptcy games," Economics Bulletin, AccessEcon, vol. 3(9), pages 1-8.
    4. Alparslan-Gok, S.Z. & Brânzei, R. & Tijs, S.H., 2008. "Cores and Stable Sets for Interval-Valued Games," Discussion Paper 2008-17, Tilburg University, Center for Economic Research.
    5. S. Alparslan Gök & R. Branzei & S. Tijs, 2010. "The interval Shapley value: an axiomatization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(2), pages 131-140, June.
    6. S. Alparslan-Gök & Silvia Miquel & Stef Tijs, 2009. "Cooperation under interval uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(1), pages 99-109, March.
    7. Branzei, R. & Tijs, S.H., 2003. "On convex fuzzy games," Other publications TiSEM b53ebd70-807d-46cf-a854-f, Tilburg University, School of Economics and Management.
    8. Brânzei, R. & Dimitrov, D.A. & Pickl, S. & Tijs, S.H., 2002. "How to Cope with Division Problems under Interval Uncertainty of Claims?," Discussion Paper 2002-96, Tilburg University, Center for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan-An Hwang & Wei-Yuan Yang, 2014. "A note on potential approach under interval games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 571-577, July.
    2. Li, Deng-Feng, 2011. "Linear programming approach to solve interval-valued matrix games," Omega, Elsevier, vol. 39(6), pages 655-666, December.
    3. Fanyong Meng & Xiaohong Chen & Chunqiao Tan, 2016. "Cooperative fuzzy games with interval characteristic functions," Operational Research, Springer, vol. 16(1), pages 1-24, April.
    4. Lina Mallozzi & Juan Vidal-Puga, 2021. "Uncertainty in cooperative interval games: how Hurwicz criterion compatibility leads to egalitarianism," Annals of Operations Research, Springer, vol. 301(1), pages 143-159, June.
    5. ShinichiIshihara & Junnosuke Shino, 2023. "An AxiomaticAnalysisofIntervalShapleyValues," Working Papers 2214, Waseda University, Faculty of Political Science and Economics.
    6. Jian Li & Jian-qiang Wang & Jun-hua Hu, 2019. "Interval-valued n-person cooperative games with satisfactory degree constraints," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 1177-1194, December.
    7. Fang-Xuan Hong & Deng-Feng Li, 2017. "Nonlinear programming method for interval-valued n-person cooperative games," Operational Research, Springer, vol. 17(2), pages 479-497, July.
    8. Yu, Xiaohui & He, Mingke & Sun, Hongxia & Zhou, Zhen, 2020. "Uncertain coalition structure game with payoff of belief structure," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    9. Hsien-Chung Wu, 2018. "Interval-Valued Cores and Interval-Valued Dominance Cores of Cooperative Games Endowed with Interval-Valued Payoffs," Mathematics, MDPI, vol. 6(11), pages 1-26, November.
    10. Deng-Feng Li & Yin-Fang Ye, 2018. "Interval-valued least square prenucleolus of interval-valued cooperative games and a simplified method," Operational Research, Springer, vol. 18(1), pages 205-220, April.
    11. Chunqiao Tan & Wenrui Feng & Weibin Han, 2020. "On the Banzhaf-like Value for Cooperative Games with Interval Payoffs," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    12. Rene (J.R.) van den Brink & Osman Palanci & S. Zeynep Alparslan Gok, 2017. "Interval Solutions for Tu-games," Tinbergen Institute Discussion Papers 17-094/II, Tinbergen Institute.
    13. Gerwald Gulick & Henk Norde, 2013. "Fuzzy cores and fuzzy balancedness," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(2), pages 131-146, April.
    14. Alparslan-Gok, S.Z. & Miquel, S. & Tijs, S.H., 2008. "Cooperation under Interval Uncertainty," Other publications TiSEM 9a01bd57-964d-4e71-8508-7, Tilburg University, School of Economics and Management.
    15. Branzei, Rodica & Dimitrov, Dinko & Tijs, Stef, 2004. "Egalitarianism in convex fuzzy games," Mathematical Social Sciences, Elsevier, vol. 47(3), pages 313-325, May.
    16. Moretti, S. & Alparslan-Gok, S.Z. & Brânzei, R. & Tijs, S.H., 2008. "Connection Situations under Uncertainty," Other publications TiSEM e9771ffd-ce59-4b8d-a2c8-d, Tilburg University, School of Economics and Management.
    17. S. Alparslan Gök & R. Branzei & S. Tijs, 2010. "The interval Shapley value: an axiomatization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(2), pages 131-140, June.
    18. Yaron Azrieli & Ehud Lehrer, 2007. "On some families of cooperative fuzzy games," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(1), pages 1-15, September.
    19. Luisa Carente & Balbina Casas-Mendez & Ignacio Carcia-Jurado & Anne van den Nouweland, 2007. "The Truncated Core for Games with Limited Aspirations," Department of Economics - Working Papers Series 1010, The University of Melbourne.
    20. Junnosuke Shino & Shinichi Ishihara & Shimpei Yamauchi, 2022. "Shapley Mapping and Its Axiomatizations in n -Person Cooperative Interval Games," Mathematics, MDPI, vol. 10(21), pages 1-14, October.

    More about this item

    Keywords

    Shapley value; interval game;

    JEL classification:

    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-11-00408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.