IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v18y2018i1d10.1007_s12351-016-0260-y.html
   My bibliography  Save this article

Interval-valued least square prenucleolus of interval-valued cooperative games and a simplified method

Author

Listed:
  • Deng-Feng Li

    (Fuzhou University)

  • Yin-Fang Ye

    (Fuzhou University)

Abstract

The aim of this paper is to propose the concept of the interval-valued least square prenucleolus of interval-valued cooperative games and develop a direct and an effective simplified method for solving a special subclass of interval-valued cooperative games. In this method, through adding some conditions, the least square prenucleolus of cooperative games is proved to be a monotonic and non-decreasing function of coalitions’ values. Hence, the interval-valued least square prenucleolus of coalition size monotonicity-like interval-valued cooperative games can directly obtained via determining its lower and upper bounds by using the lower and upper bounds of the interval-valued coalitions’ payoffs, respectively. Thus, the proposed method may overcome the issues resulted from the Moore’s interval subtraction and the partial subtraction operator. Examples are used to illustrate the proposed method and comparison analysis is conducted to show its applicability and superiority. Moreover, some important properties of the interval-valued least square prenucleolus of coalition size monotonicity-like interval-valued cooperative games are discussed.

Suggested Citation

  • Deng-Feng Li & Yin-Fang Ye, 2018. "Interval-valued least square prenucleolus of interval-valued cooperative games and a simplified method," Operational Research, Springer, vol. 18(1), pages 205-220, April.
  • Handle: RePEc:spr:operea:v:18:y:2018:i:1:d:10.1007_s12351-016-0260-y
    DOI: 10.1007/s12351-016-0260-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-016-0260-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-016-0260-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Branzei & O. Branzei & S. Alparslan Gök & S. Tijs, 2010. "Cooperative interval games: a survey," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(3), pages 397-411, September.
    2. repec:ebl:ecbull:v:3:y:2003:i:9:p:1-8 is not listed on IDEAS
    3. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Dinko Dimitrov & Stef Tijs & Rodica Branzei, 2003. "Shapley-like values for interval bankruptcy games," Economics Bulletin, AccessEcon, vol. 3(9), pages 1-8.
    5. S. Alparslan Gök & R. Branzei & S. Tijs, 2010. "The interval Shapley value: an axiomatization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 18(2), pages 131-140, June.
    6. Alparslan Gök, S.Z. & Branzei, O. & Branzei, R. & Tijs, S., 2011. "Set-valued solution concepts using interval-type payoffs for interval games," Journal of Mathematical Economics, Elsevier, vol. 47(4-5), pages 621-626.
    7. R. Branzei & S. Gök & O. Branzei, 2011. "Cooperative games under interval uncertainty: on the convexity of the interval undominated cores," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(4), pages 523-532, December.
    8. Li, Deng-Feng, 2011. "Linear programming approach to solve interval-valued matrix games," Omega, Elsevier, vol. 39(6), pages 655-666, December.
    9. Ruiz, Luis M & Valenciano, Federico & Zarzuelo, Jose M, 1996. "The Least Square Prenucleolus and the Least Square Nucleolus. Two Values for TU Games Based on the Excess Vector," International Journal of Game Theory, Springer;Game Theory Society, vol. 25(1), pages 113-134.
    10. Deng-Feng Li, 2016. "Models and Methods for Interval-Valued Cooperative Games in Economic Management," Springer Books, Springer, edition 1, number 978-3-319-28998-4, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adil Baykasoğlu & Burcu Kubur Özbel, 2021. "Explicit flow-risk allocation for cooperative maximum flow problems under interval uncertainty," Operational Research, Springer, vol. 21(3), pages 2149-2179, September.
    2. Liu, Jia-Cai & Sheu, Jiuh-Biing & Li, Deng-Feng & Dai, Yong-Wu, 2021. "Collaborative profit allocation schemes for logistics enterprise coalitions with incomplete information," Omega, Elsevier, vol. 101(C).
    3. Hsien-Chung Wu, 2018. "Interval-Valued Cores and Interval-Valued Dominance Cores of Cooperative Games Endowed with Interval-Valued Payoffs," Mathematics, MDPI, vol. 6(11), pages 1-26, November.
    4. Jian Li & Jian-qiang Wang & Jun-hua Hu, 2019. "Interval-valued n-person cooperative games with satisfactory degree constraints," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 1177-1194, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hsien-Chung Wu, 2018. "Interval-Valued Cores and Interval-Valued Dominance Cores of Cooperative Games Endowed with Interval-Valued Payoffs," Mathematics, MDPI, vol. 6(11), pages 1-26, November.
    2. Liu, Zhi & Zheng, Xiao-Xue & Li, Deng-Feng & Liao, Chen-Nan & Sheu, Jiuh-Biing, 2021. "A novel cooperative game-based method to coordinate a sustainable supply chain under psychological uncertainty in fairness concerns," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    3. Liu, Jia-Cai & Sheu, Jiuh-Biing & Li, Deng-Feng & Dai, Yong-Wu, 2021. "Collaborative profit allocation schemes for logistics enterprise coalitions with incomplete information," Omega, Elsevier, vol. 101(C).
    4. Lina Mallozzi & Juan Vidal-Puga, 2021. "Uncertainty in cooperative interval games: how Hurwicz criterion compatibility leads to egalitarianism," Annals of Operations Research, Springer, vol. 301(1), pages 143-159, June.
    5. Jian Li & Jian-qiang Wang & Jun-hua Hu, 2019. "Interval-valued n-person cooperative games with satisfactory degree constraints," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 1177-1194, December.
    6. Yan-An Hwang & Wei-Yuan Yang, 2014. "A note on potential approach under interval games," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 571-577, July.
    7. Fang-Xuan Hong & Deng-Feng Li, 2017. "Nonlinear programming method for interval-valued n-person cooperative games," Operational Research, Springer, vol. 17(2), pages 479-497, July.
    8. Li, Deng-Feng, 2011. "Linear programming approach to solve interval-valued matrix games," Omega, Elsevier, vol. 39(6), pages 655-666, December.
    9. Yan-an Hwang & Ming-chuan Chen, 2012. "A new axiomatization of the Shapley value under interval uncertainty," Economics Bulletin, AccessEcon, vol. 32(1), pages 799-810.
    10. ShinichiIshihara & Junnosuke Shino, 2023. "An AxiomaticAnalysisofIntervalShapleyValues," Working Papers 2214, Waseda University, Faculty of Political Science and Economics.
    11. Chunqiao Tan & Wenrui Feng & Weibin Han, 2020. "On the Banzhaf-like Value for Cooperative Games with Interval Payoffs," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    12. Adil Baykasoğlu & Burcu Kubur Özbel, 2021. "Explicit flow-risk allocation for cooperative maximum flow problems under interval uncertainty," Operational Research, Springer, vol. 21(3), pages 2149-2179, September.
    13. Michel Grabisch & Agnieszka Rusinowska, 2020. "k -additive upper approximation of TU-games," PSE-Ecole d'économie de Paris (Postprint) halshs-02860802, HAL.
    14. Wenna Wang & Hao Sun & Rene (J.R.) van den Brink & Genjiu Xu, 2018. "The family of ideal values for cooperative games," Tinbergen Institute Discussion Papers 18-002/II, Tinbergen Institute.
    15. Junnosuke Shino & Shinichi Ishihara & Shimpei Yamauchi, 2022. "Shapley Mapping and Its Axiomatizations in n -Person Cooperative Interval Games," Mathematics, MDPI, vol. 10(21), pages 1-14, October.
    16. Yu, Xiaohui & He, Mingke & Sun, Hongxia & Zhou, Zhen, 2020. "Uncertain coalition structure game with payoff of belief structure," Applied Mathematics and Computation, Elsevier, vol. 372(C).
    17. Zheng, Xiao-Xue & Li, Deng-Feng & Liu, Zhi & Jia, Fu & Lev, Benjamin, 2021. "Willingness-to-cede behaviour in sustainable supply chain coordination," International Journal of Production Economics, Elsevier, vol. 240(C).
    18. Jiacai Liu & Wenjian Zhao, 2016. "Cost-Sharing of Ecological Construction Based on Trapezoidal Intuitionistic Fuzzy Cooperative Games," IJERPH, MDPI, vol. 13(11), pages 1-12, November.
    19. Elena Iñarra & Roberto Serrano & Ken-Ichi Shimomura, 2020. "The Nucleolus, the Kernel, and the Bargaining Set: An Update," Revue économique, Presses de Sciences-Po, vol. 71(2), pages 225-266.
    20. Zheng, Xiao-Xue & Liu, Zhi & Li, Kevin W. & Huang, Jun & Chen, Ji, 2019. "Cooperative game approaches to coordinating a three-echelon closed-loop supply chain with fairness concerns," International Journal of Production Economics, Elsevier, vol. 212(C), pages 92-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:18:y:2018:i:1:d:10.1007_s12351-016-0260-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.