IDEAS home Printed from https://ideas.repec.org/a/dug/actaec/y2017i5p59-71.html
   My bibliography  Save this article

Towards an Integrated Management and Planning in the Romanian Black Sea Coastal Zones

Author

Listed:
  • Anton Catalin

    (Ovidius University Constanta)

  • Carmen Gasparotti

    (Dunarea de Jos University of Galati)

  • Alina Raileanu

    (Danubius University)

  • Carmen Gasparotti

    (Dunarea de Jos University of Galati)

  • Rusu Eugen

    (Dunarea de Jos University of Galati)

Abstract

The socio-economic and “natural” systems are, to a variable extent, now locked in a coevolutionary path, characterized by a joint determinism and complex feedback effects. The management of the coastal zones, including also modeling and assessment measures, should, be reoriented over time to properly capture the causes and consequences of the joint system changes as manifested in the coastal areas. This will require a collaborative work among a range of economical, environmental and social science disciplines. The pressures and the high instability are similar between the coast and the sea, in both senses (from the land to the sea and also from the sea to the land), being given by various factors as the strong winds, waves, storms, open sea, currents, as well well also the variability of temperatures, salinity, density, due to the Danube impact, etc. The influence of the rivers discharging into the Black Sea is important, while the coastal erosion, flooding, urbanization, tourism, naval industry have an impact on the coast and the sea environment. The Marine Spatial Planning Directive is appropriate in Romania to put in practice the similar tools, and practical approach from the coast to the maritime space. This paper aims to represent an useful starting point in the management of the coastal zones for both natural and social science research that would be seeked (by a more integrated modelling and assessment process) to better describe and understand the functioning of the ecosystems, that form the coastal interface, and in particular the filter effect is exerted on nutrients in response to the environmental pressures, both anthropogenic and non-anthropogenic - the climate change, land use/cover change, urbanization and effluent treatment from both point and non-point sources. For this it is necessary a broad analytical framework (rather than a specific model) in which to set a more detailed analysis.

Suggested Citation

  • Anton Catalin & Carmen Gasparotti & Alina Raileanu & Carmen Gasparotti & Rusu Eugen, 2017. "Towards an Integrated Management and Planning in the Romanian Black Sea Coastal Zones," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 13(5), pages 59-71, OCTOBER.
  • Handle: RePEc:dug:actaec:y:2017:i:5:p:59-71
    as

    Download full text from publisher

    File URL: http://journals.univ-danubius.ro/index.php/oeconomica/article/view/4381/4208
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eugen Rusu, 2014. "Evaluation of the Wave Energy Conversion Efficiency in Various Coastal Environments," Energies, MDPI, vol. 7(6), pages 1-17, June.
    2. Liliana Rusu, 2015. "Assessment of the Wave Energy in the Black Sea Based on a 15-Year Hindcast with Data Assimilation," Energies, MDPI, vol. 8(9), pages 1-19, September.
    3. Tănase Zanopol, Andrei & Onea, Florin & Rusu, Eugen, 2014. "Coastal impact assessment of a generic wave farm operating in the Romanian nearshore," Energy, Elsevier, vol. 72(C), pages 652-670.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rusu, Liliana, 2019. "Evaluation of the near future wave energy resources in the Black Sea under two climate scenarios," Renewable Energy, Elsevier, vol. 142(C), pages 137-146.
    2. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.
    3. Liliana Rusu, 2015. "Assessment of the Wave Energy in the Black Sea Based on a 15-Year Hindcast with Data Assimilation," Energies, MDPI, vol. 8(9), pages 1-19, September.
    4. Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Rusu, Eugen & Onea, Florin, 2019. "A parallel evaluation of the wind and wave energy resources along the Latin American and European coastal environments," Renewable Energy, Elsevier, vol. 143(C), pages 1594-1607.
    6. Carlo Lo Re & Giorgio Manno & Giuseppe Ciraolo & Giovanni Besio, 2019. "Wave Energy Assessment around the Aegadian Islands (Sicily)," Energies, MDPI, vol. 12(3), pages 1-20, January.
    7. Daniel Ganea & Valentin Amortila & Elena Mereuta & Eugen Rusu, 2017. "A Joint Evaluation of the Wind and Wave Energy Resources Close to the Greek Islands," Sustainability, MDPI, vol. 9(6), pages 1-22, June.
    8. Rusu, Liliana & Onea, Florin, 2017. "The performance of some state-of-the-art wave energy converters in locations with the worldwide highest wave power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1348-1362.
    9. Florin Onea & Eugen Rusu, 2018. "Sustainability of the Reanalysis Databases in Predicting the Wind and Wave Power along the European Coasts," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
    10. Florin Onea & Liliana Rusu, 2017. "A Long-Term Assessment of the Black Sea Wave Climate," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    11. Rusu, Liliana, 2020. "A projection of the expected wave power in the Black Sea until the end of the 21st century," Renewable Energy, Elsevier, vol. 160(C), pages 136-147.
    12. Rusu, Liliana, 2019. "The wave and wind power potential in the western Black Sea," Renewable Energy, Elsevier, vol. 139(C), pages 1146-1158.
    13. Nadège Bouchonneau & Arnaud Coutrey & Vivianne Marie Bruère & Moacyr Araújo & Alex Costa da Silva, 2023. "Finite Element Modeling and Simulation of a Submerged Wave Energy Converter System for Application to Oceanic Islands in Tropical Atlantic," Energies, MDPI, vol. 16(4), pages 1-17, February.
    14. George Lavidas & Francesco De Leo & Giovanni Besio, 2020. "Blue Growth Development in the Mediterranean Sea: Quantifying the Benefits of an Integrated Wave Energy Converter at Genoa Harbour," Energies, MDPI, vol. 13(16), pages 1-14, August.
    15. Craig Jones & Grace Chang & Kaustubha Raghukumar & Samuel McWilliams & Ann Dallman & Jesse Roberts, 2018. "Spatial Environmental Assessment Tool (SEAT): A Modeling Tool to Evaluate Potential Environmental Risks Associated with Wave Energy Converter Deployments," Energies, MDPI, vol. 11(8), pages 1-19, August.
    16. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    17. Majidi, Ajab Gul & Bingölbali, Bilal & Akpınar, Adem & Rusu, Eugen, 2021. "Wave power performance of wave energy converters at high-energy areas of a semi-enclosed sea," Energy, Elsevier, vol. 220(C).
    18. Wanan Sheng & Hui Li & Jimmy Murphy, 2017. "An Improved Method for Energy and Resource Assessment of Waves in Finite Water Depths," Energies, MDPI, vol. 10(8), pages 1-17, August.
    19. Bertram, D.V. & Tarighaleslami, A.H. & Walmsley, M.R.W. & Atkins, M.J. & Glasgow, G.D.E., 2020. "A systematic approach for selecting suitable wave energy converters for potential wave energy farm sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    20. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dug:actaec:y:2017:i:5:p:59-71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Daniela Robu (email available below). General contact details of provider: https://edirc.repec.org/data/fedanro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.