IDEAS home Printed from https://ideas.repec.org/a/dug/actaec/y2013i4p430-442.html
   My bibliography  Save this article

The Indicators’ Inadequacy and the Predictions’ Accuracy

Author

Listed:
  • Constantin Mitru?

    (Academy of Economic Studies, Bucharest, Romania)

  • Mihaela Bratu (Simionescu)

    (Academy of Economic Studies, Bucharest, Romania)

Abstract

In this article, we proposed the introduction in literature of a new source of uncertainty in modeling and forecasting: the indicators’ inadequacy. Even if it was observed, a specific nominalization in the context of forecasting procedure has not been done yet. The inadequacy of indicators as a supplementary source of uncertainty generates a lower degree of accuracy in forecasting. This assumption was proved using empirical data related to the prediction of unemployment rate in Romania on the horizon 2011-2013. Four strategies of modeling and predicting the unemployment rate were proposed, observing two types of indicators’ inadequacy: the use of transformed variables in order to get stationary data set (the difference between the unemployment rates registered in two successive periods was used instead of the unemployment rate) and the utilization of macro-regional unemployment rates whose predictions are aggregated in order to forecast the overall unemployment rate in Romania. The results put in evidence that the predictions of the total unemployment rate using moving average models of order 2 are the most accurate, being followed by the forecasts based on the predictions of active civil population and number of unemployed people. The strategies based on the aggregation of the predictions for the four macro-regional unemployment rates imply a higher inadequacy and consequently a lower degree of forecasts’ accuracy

Suggested Citation

  • Constantin Mitru? & Mihaela Bratu (Simionescu), 2013. "The Indicators’ Inadequacy and the Predictions’ Accuracy," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 9(4), pages 430-442, August.
  • Handle: RePEc:dug:actaec:y:2013:i:4:p:430-442
    as

    Download full text from publisher

    File URL: http://journals.univ-danubius.ro/index.php/oeconomica/article/view/1845
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dovern, Jonas & Weisser, Johannes, 2011. "Accuracy, unbiasedness and efficiency of professional macroeconomic forecasts: An empirical comparison for the G7," International Journal of Forecasting, Elsevier, vol. 27(2), pages 452-465.
    2. Heilemann, Ullrich & Stekler, Herman, 2007. "Introduction to "The future of macroeconomic forecasting"," International Journal of Forecasting, Elsevier, vol. 23(2), pages 159-165.
    3. Matteo Ciccarelli & Kirstin Hubrich, 2010. "Forecast uncertainty: sources, measurement and evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 509-513.
    4. Filip Novotný & Marie Raková, 2011. "Assessment of Consensus Forecasts Accuracy: The Czech National Bank Perspective," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 61(4), pages 348-366, August.
    5. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
    6. Ruth, Karsten, 2008. "Macroeconomic forecasting in the EMU: Does disaggregate modeling improve forecast accuracy?," Journal of Policy Modeling, Elsevier, vol. 30(3), pages 417-429.
    7. Gorr, Wilpen L., 2009. "Forecast accuracy measures for exception reporting using receiver operating characteristic curves," International Journal of Forecasting, Elsevier, vol. 25(1), pages 48-61.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihaela Bratu, 2012. "A Strategy to Improve the Survey of Professional Forecasters (SPF) Predictions Using Bias-Corrected-Accelerated (BCA) Bootstrap Forecast Intervals," International Journal of Synergy and Research, ToKnowPress, vol. 1(2), pages 45-59.
    2. BRATU SIMIONESCU, Mihaela, 2012. "Two Quantitative Forecasting Methods For Macroeconomic Indicators In Czech Republic," Annals of Spiru Haret University, Economic Series, Universitatea Spiru Haret, vol. 3(1), pages 71-87.
    3. Mihaela Bratu (Simionescu), 2013. "How to Improve the SPF Forecasts?," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 9(2), pages 153-165, April.
    4. Mihaela Simionescu, 2015. "The Improvement of Unemployment Rate Predictions Accuracy," Prague Economic Papers, Prague University of Economics and Business, vol. 2015(3), pages 274-286.
    5. Mihaela BRATU (SIMIONESCU), 2012. "A Strategy To Improve The Gdp Index Forcasts In Romania Using Moving Average Models Of Historical Errors Of The Dobrescu Macromodel," Romanian Journal of Economics, Institute of National Economy, vol. 35(2(44)), pages 128-138, December.
    6. Bratu Mihaela, 2013. "An Evaluation Of Usa Unemployment Rate Forecasts In Terms Of Accuracy And Bias. Empirical Methods To Improve The Forecasts Accuracy," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 1, pages 170-180, February.
    7. Mihaela Simionescu, 2014. "What Type Of Social Capital Is Engaged By The French Dairy Stockbreeders? A Characterization Through Their Professional Identities," Romanian Journal of Regional Science, Romanian Regional Science Association, vol. 8(1), pages 87-102, JUNE.
    8. Marcos Bujosa & Antonio García‐Ferrer & Aránzazu de Juan & Antonio Martín‐Arroyo, 2020. "Evaluating early warning and coincident indicators of business cycles using smooth trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 1-17, January.
    9. Philip Hans Franses & Max Welz, 2020. "Does More Expert Adjustment Associate with Less Accurate Professional Forecasts?," JRFM, MDPI, vol. 13(3), pages 1-8, March.
    10. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    11. Simón Sosvilla-Rivero & María del Carmen Ramos-Herrera, 2018. "Inflation, real economic growth and unemployment expectations: an empirical analysis based on the ECB survey of professional forecasters," Applied Economics, Taylor & Francis Journals, vol. 50(42), pages 4540-4555, September.
    12. Mihaela Bratu, 2013. "New Methods of Evaluating the Forecasts Accuracy: A Case Study for USA Inflation," Business and Economic Research, Macrothink Institute, vol. 3(1), pages 21-37, June.
    13. Eva A. Arnold, 2013. "The Role of Data Revisions and Disagreement in Professional Forecasts," Macroeconomics and Finance Series 201303, University of Hamburg, Department of Socioeconomics.
    14. Pedersen, Michael, 2019. "Anomalies in macroeconomic prediction errors–evidence from Chilean private forecasters," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1100-1107.
    15. repec:ath:journl:tome:34:v:2:y:2014:i:34:p:197-209 is not listed on IDEAS
    16. Tara M. Sinclair, 2019. "Continuities and Discontinuities in Economic Forecasting," Working Papers 2019-003, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    17. Chang, Chia-Lin & de Bruijn, Bert & Franses, Philip Hans & McAleer, Michael, 2013. "Analyzing fixed-event forecast revisions," International Journal of Forecasting, Elsevier, vol. 29(4), pages 622-627.
    18. Mauro Costantini & Ulrich Gunter & Robert M. Kunst, 2017. "Forecast Combinations in a DSGE‐VAR Lab," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(3), pages 305-324, April.
    19. Jing Zeng, 2015. "Combining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates," Working Paper Series of the Department of Economics, University of Konstanz 2015-11, Department of Economics, University of Konstanz.
    20. Philip Hans Franses & Max Welz, 2022. "Evaluating heterogeneous forecasts for vintages of macroeconomic variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 829-839, July.
    21. Geoff Kenny & Thomas Kostka & Federico Masera, 2015. "Density characteristics and density forecast performance: a panel analysis," Empirical Economics, Springer, vol. 48(3), pages 1203-1231, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dug:actaec:y:2013:i:4:p:430-442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Daniela Robu (email available below). General contact details of provider: https://edirc.repec.org/data/fedanro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.