IDEAS home Printed from https://ideas.repec.org/a/rrs/journl/v8y2014i1p87-102.html
   My bibliography  Save this article

What Type Of Social Capital Is Engaged By The French Dairy Stockbreeders? A Characterization Through Their Professional Identities

Author

Listed:
  • Mihaela Simionescu

    (Institute for Economic Forecasting of the Romanian Academy, Romania)

Abstract

The GDP forecasting is a prior concern for each country, but also for an entire region composed by more countries with specific and different evolutions of GDP. The GDP predictions for the 27 European Union are based on two econometric techniques. It was proved, using accuracy indicators like U1 and U2 Theil’s coefficients and statistical tests (Morgan-Granger-Newbold test, Harvey-Leybourne-Newbold test and Diebold-Mariano test) that the aggregation of forecasts made for each country in the EU on horizon 2011-2013 provided better forecasts than the use of a single semi-logarithmic model for the entire region. However, the naïve forecasts gave more accurate results than the proposed models, this conclusion being in accordance with the recent results in literature regarding GDP forecasting. For 2013 the ex-ante evaluation of forecasts was made, considering that the actual value is the one registered in 2012. It is anticipated an underestimation of the GDP rate according to the aggregation technique if the benchmark is the indicator’s value in 2012.

Suggested Citation

  • Mihaela Simionescu, 2014. "What Type Of Social Capital Is Engaged By The French Dairy Stockbreeders? A Characterization Through Their Professional Identities," Romanian Journal of Regional Science, Romanian Regional Science Association, vol. 8(1), pages 87-102, JUNE.
  • Handle: RePEc:rrs:journl:v:8:y:2014:i:1:p:87-102
    as

    Download full text from publisher

    File URL: http://rjrs.ase.ro/wp-content/uploads/2017/03/V81/V816.Simionescu.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dovern, Jonas & Weisser, Johannes, 2011. "Accuracy, unbiasedness and efficiency of professional macroeconomic forecasts: An empirical comparison for the G7," International Journal of Forecasting, Elsevier, vol. 27(2), pages 452-465.
    2. Marcellino, Massimliano, 2004. "Forecasting EMU macroeconomic variables," International Journal of Forecasting, Elsevier, vol. 20(2), pages 359-372.
    3. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    4. Zizi Goschin, 2007. "Spatial and sectoral analysis of productivity-wage dissimilarities in Romania," Romanian Journal of Regional Science, Romanian Regional Science Association, vol. 1(1), pages 33-44, December.
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    6. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    7. Grant Allan, 2012. "Evaluating the usefulness of forecasts of relative growth," Working Papers 1214, University of Strathclyde Business School, Department of Economics.
    8. Bruno Deschamps & Paolo Bianchi, 2012. "An evaluation of Chinese macroeconomic forecasts," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 10(3), pages 229-246, December.
    9. Ruth, Karsten, 2008. "Macroeconomic forecasting in the EMU: Does disaggregate modeling improve forecast accuracy?," Journal of Policy Modeling, Elsevier, vol. 30(3), pages 417-429.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihaela Bratu, 2012. "A Strategy to Improve the Survey of Professional Forecasters (SPF) Predictions Using Bias-Corrected-Accelerated (BCA) Bootstrap Forecast Intervals," International Journal of Synergy and Research, ToKnowPress, vol. 1(2), pages 45-59.
    2. Mihaela Simionescu, 2015. "The Improvement of Unemployment Rate Predictions Accuracy," Prague Economic Papers, Prague University of Economics and Business, vol. 2015(3), pages 274-286.
    3. Mihaela BRATU (SIMIONESCU), 2012. "A Strategy To Improve The Gdp Index Forcasts In Romania Using Moving Average Models Of Historical Errors Of The Dobrescu Macromodel," Romanian Journal of Economics, Institute of National Economy, vol. 35(2(44)), pages 128-138, December.
    4. Bratu Mihaela, 2013. "An Evaluation Of Usa Unemployment Rate Forecasts In Terms Of Accuracy And Bias. Empirical Methods To Improve The Forecasts Accuracy," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 1, pages 170-180, February.
    5. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    6. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    7. Kenneth S. Rogoff & Vania Stavrakeva, 2008. "The Continuing Puzzle of Short Horizon Exchange Rate Forecasting," NBER Working Papers 14071, National Bureau of Economic Research, Inc.
    8. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    9. Ming-Chih Lee & Chien-Liang Chiu & Wan-Hsiu Cheng, 2007. "Enhancing Forecast Accuracy By Using Long Estimation Periods," The International Journal of Business and Finance Research, The Institute for Business and Finance Research, vol. 1(2), pages 1-9.
    10. Marcos Bujosa & Antonio García‐Ferrer & Aránzazu de Juan & Antonio Martín‐Arroyo, 2020. "Evaluating early warning and coincident indicators of business cycles using smooth trends," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 1-17, January.
    11. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    12. Rangan Gupta & Mampho P. Modise & Josine Uwilingiye, 2016. "Out-of-Sample Equity Premium Predictability in South Africa: Evidence from a Large Number of Predictors," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 52(8), pages 1935-1955, August.
    13. Chatterjee, Ujjal K., 2015. "Bank liquidity creation and asset market liquidity," Journal of Financial Stability, Elsevier, vol. 18(C), pages 139-153.
    14. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    15. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    16. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    17. Atsushi Inoue & Lutz Kilian, 2005. "In-Sample or Out-of-Sample Tests of Predictability: Which One Should We Use?," Econometric Reviews, Taylor & Francis Journals, vol. 23(4), pages 371-402.
    18. David Bivin, 2005. "Gauging the performance of the linear-quadratic inventory model," Applied Economics, Taylor & Francis Journals, vol. 37(11), pages 1215-1231.
    19. Greg Tkacz & Carolyn Wilkins, 2008. "Linear and threshold forecasts of output and inflation using stock and housing prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(2), pages 131-151.
    20. Clark, Todd E. & McCracken, Michael W., 2006. "The Predictive Content of the Output Gap for Inflation: Resolving In-Sample and Out-of-Sample Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1127-1148, August.

    More about this item

    Keywords

    forecasts accuracy; naive forecasts; predictions; GDP rate; econometric model;
    All these keywords.

    JEL classification:

    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rrs:journl:v:8:y:2014:i:1:p:87-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bogdan-Vasile Ileanu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.