IDEAS home Printed from https://ideas.repec.org/a/diw/diwvjh/76-4-5.html
   My bibliography  Save this article

Prognosen der regionalen Konjunkturentwicklung

Author

Listed:
  • Christian Dreger
  • Konstantin A. Kholodilin

Abstract

German business cycle forecasts refer to the whole country. However, the usefulness of these forecasts at the regional level is not uncontroversial. Significant deviations between regional and national forecasts could occur if the sectoral structure is different. In this case, the forecast for the entire economy might be rather uninformative for a specific region. To bridge the gap, we develop a method for business cycle forecasts at the regional level which can be applied for the German states. In particular, the regional evolution is explained by the national economic development and regional indicators. The latter are determined by means of a principal component analysis from a huge set of time series. Using this approach, we are able to forecast the regional performance for the current year and the year ahead. The principal technique is illustrated for the state of Berlin. Vorhersagen der konjunkturellen Entwicklung werden in Deutschland meist für die Ebene der Gesamtwirtschaft durchgeführt. Sie sind jedoch nicht auf die regionalen Verhältnisse übertragbar. Signifikante Abweichungen können sich unter anderem wegen einer unterschiedlichen Sektoralstruktur ergeben. Eventuell liefert die gesamtwirtschaftliche Prognose ein verzerrtes Bild, wenn es darum geht, die künftige wirtschaftliche Entwicklung in der Region zu beurteilen. Daher wird hier ein Verfahren zur Prognose der regionalen Wirtschaftsentwicklung diskutiert, das auf der Ebene der einzelnen Bundesländer einsetzbar ist. Darin wird die regionale Entwicklung zum einen durch den gesamtwirtschaftlichen Verlauf erklärt. Zum anderen sind regionalspezifische Indikatoren entscheidend, die im Rahmen einer Hauptkomponentenanalyse bestimmt werden. Das Verfahren erlaubt eine verlässliche Vorhersage der regionalen Entwicklung in den einzelnen Bundesländern im laufenden und im folgenden Jahr. Die Methode wird exemplarisch für das Land Berlin dargestellt.

Suggested Citation

  • Christian Dreger & Konstantin A. Kholodilin, 2007. "Prognosen der regionalen Konjunkturentwicklung," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 76(4), pages 47-55.
  • Handle: RePEc:diw:diwvjh:76-4-5
    DOI: 10.3790/vjh.76.4.47
    as

    Download full text from publisher

    File URL: https://doi.org/10.3790/vjh.76.4.47
    Download Restriction: no

    File URL: https://libkey.io/10.3790/vjh.76.4.47?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marcellino, Massimiliano & Banerjee, Anindya & Masten, Igor, 2005. "Forecasting macroeconomic variables for the new member states of the European Union," Working Paper Series 482, European Central Bank.
    2. Tommaso Proietti, 2006. "Temporal disaggregation by state space methods: Dynamic regression methods revisited," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 357-372, November.
    3. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Lehmann, 2016. "Economic Growth and Business Cycle Forecasting at the Regional Level," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 65.
    2. Wenzel, Lars, 2013. "Forecasting regional growth in Germany: A panel approach using business survey data," HWWI Research Papers 133, Hamburg Institute of International Economics (HWWI).
    3. Robert Lehmann & Klaus Wohlrabe, 2014. "Forecasting gross value-added at the regional level: are sectoral disaggregated predictions superior to direct ones?," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 34(1), pages 61-90, February.
    4. Wenzel, Lars & Wolf, André, 2013. "Short-term forecasting with business surveys: Evidence for German IHK data at federal state level," HWWI Research Papers 140, Hamburg Institute of International Economics (HWWI).
    5. Rüdiger Hamm, 2011. "Creative Class as a Determinant of Economic Development - Empirical Considerations for Northrhine-Westphalian Regions based on Time-Series Analysis," ERSA conference papers ersa11p828, European Regional Science Association.
    6. Konstantin Arkadievich Kholodilin & Boriss Siliverstovs & Stefan Kooths, 2008. "A Dynamic Panel Data Approach to the Forecasting of the GDP of German Länder," Spatial Economic Analysis, Taylor & Francis Journals, vol. 3(2), pages 195-207.
    7. Robert Lehmann & Klaus Wohlrabe, 2014. "Regional economic forecasting: state-of-the-art methodology and future challenges," Economics and Business Letters, Oviedo University Press, vol. 3(4), pages 218-231.
    8. Robert Lehmann & Klaus Wohlrabe, 2015. "Forecasting GDP at the Regional Level with Many Predictors," German Economic Review, Verein für Socialpolitik, vol. 16(2), pages 226-254, May.
    9. Joachim Ragnitz & Stefan Arent & Wolfgang Nierhaus & Beate Schirwitz & Johannes Steinbrecher & Gerit Vogt & Björn Ziegenbalg, 2010. "Methodenexpertise zur Analyse der Auswirkungen der internationalen Finanz- und Wirtschaftskrise auf die Wirtschaft im Land Brandenburg : Gutachten im Auftrag des Ministeriums für Wirtschaft des Landes," ifo Dresden Studien, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 53, May.
    10. Robert Lehmann & Klaus Wohlrabe, 2012. "Die Prognose des Bruttoinlandsprodukts auf regionaler Ebene," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 65(21), pages 17-23, November.
    11. Beate Schirwitz & Christian Seiler & Klaus Wohlrabe, 2009. "Regionale Konjunkturzyklen in Deutschland – Teil I: Die Datenlage," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 62(13), pages 18-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimiliano Marcellino, 2007. "Pooling‐Based Data Interpolation and Backdating," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(1), pages 53-71, January.
    2. Lombardi, Marco J. & Maier, Philipp, 2011. "Forecasting economic growth in the euro area during the Great Moderation and the Great Recession," Working Paper Series 1379, European Central Bank.
    3. Viktors Ajevskis & Gundars Davidsons, 2008. "Dynamic Factor Models in Forecasting Latvia's Gross Domestic Product," Working Papers 2008/02, Latvijas Banka.
    4. Lippi, Marco & Reichlin, Lucrezia & Hallin, Marc & Forni, Mario & Altissimo, Filippo & Cristadoro, Riccardo & Veronese, Giovanni & Bassanetti, Antonio, 2001. "EuroCOIN: A Real Time Coincident Indicator of the Euro Area Business Cycle," CEPR Discussion Papers 3108, C.E.P.R. Discussion Papers.
    5. Winkelried, Diego, 2012. "Predicting quarterly aggregates with monthly indicators," Working Papers 2012-023, Banco Central de Reserva del Perú.
    6. repec:zbw:bofitp:2008_015 is not listed on IDEAS
    7. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
    8. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
    9. Ivan Kitov & Oleg Kitov, 2013. "Does Banque de France control inflation and unemployment?," Papers 1311.1097, arXiv.org.
    10. Brüggemann, Ralf & Lütkepohl, Helmut, 2013. "Forecasting contemporaneous aggregates with stochastic aggregation weights," International Journal of Forecasting, Elsevier, vol. 29(1), pages 60-68.
    11. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    12. Kirstin Hubrich & Guenter Beck & Massimiliano Marcellino, 2000. "Regional Inflation Dynamics within and across Euro Area Countries and a Comparison with the US," Regional and Urban Modeling 283600037, EcoMod.
    13. Banerjee, Anindya & Marcellino, Massimiliano, 2006. "Are there any reliable leading indicators for US inflation and GDP growth?," International Journal of Forecasting, Elsevier, vol. 22(1), pages 137-151.
    14. Matteo Luciani & Lorenzo Ricci, 2014. "Nowcasting Norway," International Journal of Central Banking, International Journal of Central Banking, vol. 10(4), pages 215-248, December.
    15. Filippo Ferroni & Benjamin Klaus, 2015. "Euro Area business cycles in turbulent times: convergence or decoupling?," Applied Economics, Taylor & Francis Journals, vol. 47(34-35), pages 3791-3815, July.
    16. Jing Zeng, 2015. "Combining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates," Working Paper Series of the Department of Economics, University of Konstanz 2015-11, Department of Economics, University of Konstanz.
    17. Michael Artis & Anindya Banerjee & Massimiliano Marcellino, "undated". "Factor forecasts for the UK," Working Papers 203, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    18. Fabio Canova & Matteo Ciccarelli, 2002. "Panel Index Var Models: Specification, Estimation, Testing And Leading Indicators," Working Papers. Serie AD 2002-21, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    19. Proietti, Tommaso, 2008. "Estimation of Common Factors under Cross-Sectional and Temporal Aggregation Constraints: Nowcasting Monthly GDP and its Main Components," MPRA Paper 6860, University Library of Munich, Germany.
    20. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
    21. Massimiliano Marcellino & Christian Schumacher, 2008. "Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP1," Working Papers 333, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.

    More about this item

    Keywords

    Regional economy; forecasting; principal component analysis;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwvjh:76-4-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.