IDEAS home Printed from https://ideas.repec.org/p/vid/wpaper/0303.html
   My bibliography  Save this paper

Conditional Probabilistic Population Forecasting

Author

Listed:
  • Warren Sanderson
  • Sergei Scherbov
  • Brian O'Neill
  • Wolfgang Lutz

Abstract

Since policy-makers often prefer to think in terms of alternative scenarios, the question has arisen as to whether it is possible to make conditional population forecasts in a probabilistic context. This paper shows that it is both possible and useful to make these forecasts. We do this with two different kinds of examples. The first is the probabilistic analog of deterministic scenario analysis. Conditional probabilistic scenario analysis is essential for policy-makers because it allows them to answer “what if” type questions properly when outcomes are uncertain. The second is a new category that we call “future jump-off date forecasts”. Future jump-off date forecasts are valuable because they show policy-makers the likelihood that crucial features of today’s forecasts will also be present in forecasts made in the future.

Suggested Citation

  • Warren Sanderson & Sergei Scherbov & Brian O'Neill & Wolfgang Lutz, 2003. "Conditional Probabilistic Population Forecasting," VID Working Papers 0303, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna.
  • Handle: RePEc:vid:wpaper:0303
    as

    Download full text from publisher

    File URL: https://www.oeaw.ac.at/fileadmin/subsites/Institute/VID/PDF/Publications/Working_Papers/WP2003_3.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pflaumer, Peter, 1988. "Confidence intervals for population projections based on Monte Carlo methods," International Journal of Forecasting, Elsevier, vol. 4(1), pages 135-142.
    2. Wolfgang Lutz & Sergei Scherbov, 1998. "An Expert-Based Framework for Probabilistic National Population Projections: The Example of Austria," European Journal of Population, Springer;European Association for Population Studies, vol. 14(1), pages 1-17, March.
    3. Maria Winkler-Dworak, 2003. "Food Security, Fertility Differentials and Land Degradation in Sub-Saharan Africa: A Dynamic Framework," VID Working Papers 0301, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna.
    4. Mort Webster, 2002. "The Curious Role of "Learning" in Climate Policy: Should We Wait for More Data?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 97-119.
    5. Alho, Juha M., 1990. "Stochastic methods in population forecasting," International Journal of Forecasting, Elsevier, vol. 6(4), pages 521-530, December.
    6. Tomas Frejka & Jean-Paul Sardon, 2003. "Fertility in Austria: Past, Present and the Near Future," VID Working Papers 0302, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna.
    7. Nico Keilman & Dinh Quang Pham & Arve Hetland, 2002. "Why population forecasts should be probabilistic - illustrated by the case of Norway," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 6(15), pages 409-454.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    2. Richard S. Grip & Meghan L. Grip, 2020. "Using Multiple Methods to Provide Prediction Bands of K-12 Enrollment Projections," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 39(1), pages 1-22, February.
    3. Jeff Tayman & Stanley Smith & Jeffrey Lin, 2007. "Precision, bias, and uncertainty for state population forecasts: an exploratory analysis of time series models," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 26(3), pages 347-369, June.
    4. Jeff Tayman, 2011. "Assessing Uncertainty in Small Area Forecasts: State of the Practice and Implementation Strategy," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 30(5), pages 781-800, October.
    5. Nico Keilman & Dinh Quang Pham, 2000. "Predictive Intervals for Age-Specific Fertility," European Journal of Population, Springer;European Association for Population Studies, vol. 16(1), pages 41-65, March.
    6. Stefan Rayer & Stanley Smith & Jeff Tayman, 2009. "Empirical Prediction Intervals for County Population Forecasts," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 28(6), pages 773-793, December.
    7. Franz Schwarz, 2004. "Analysis of Inequalities in Waiting Time at the Visit to the Physician using Regression Modeling for Duration Data," VID Working Papers 0404, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna.
    8. Henriette Engelhardt & Alexia Prskawetz, 2005. "Socioeconomic patterns and determinants of adult mortality due to external-causes in India: Analysis of nationally-representative, population-based survey data," VID Working Papers 0502, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna.
    9. Tomas Sobotka & Maria Winkler-Dworak & Maria Rita Testa & Wolfgang Lutz & Dimiter Philipov & Henriette Engelhardt & Richard Gisser, 2005. "Monthly Estimates of the Quantum of Fertility: Towards a Fertility Monitoring System in Austria," VID Working Papers 0501, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna.
    10. Nico Keilman & Dinh Quang Pham & Arve Hetland, 2002. "Why population forecasts should be probabilistic - illustrated by the case of Norway," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 6(15), pages 409-454.
    11. Han Lin Shang, 2012. "Point and interval forecasts of age-specific fertility rates: a comparison of functional principal component methods," Monash Econometrics and Business Statistics Working Papers 10/12, Monash University, Department of Econometrics and Business Statistics.
    12. Han Lin Shang, 2012. "Point and interval forecasts of age-specific life expectancies," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 27(21), pages 593-644.
    13. Wolfgang P. Lutz, 2001. "World population in 2050: assessing the projections: discussion," Conference Series ; [Proceedings], Federal Reserve Bank of Boston, vol. 46.
    14. Gianni Corsetti & Marco Marsili, 2013. "Previsioni stocastiche della popolazione nell’ottica di un Istituto Nazionale di Statistica," Rivista di statistica ufficiale, ISTAT - Italian National Institute of Statistics - (Rome, ITALY), vol. 15(2-3), pages 5-29.
    15. Baker, Erin, 2005. "Uncertainty and learning in a strategic environment: global climate change," Resource and Energy Economics, Elsevier, vol. 27(1), pages 19-40, January.
    16. Matthias Schmidt & Hermann Held & Elmar Kriegler & Alexander Lorenz, 2013. "Climate Policy Under Uncertain and Heterogeneous Climate Damages," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 79-99, January.
    17. Nico Keilman, 2020. "Evaluating Probabilistic Population Forecasts," Economie et Statistique / Economics and Statistics, Institut National de la Statistique et des Etudes Economiques (INSEE), issue 520-521, pages 49-64.
    18. Nordhaus, William, 2013. "Integrated Economic and Climate Modeling," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1069-1131, Elsevier.
    19. Prskawetz, A. & Kogel, T. & Sanderson, W.C. & Scherbov, S., 2007. "The effects of age structure on economic growth: An application of probabilistic forecasting to India," International Journal of Forecasting, Elsevier, vol. 23(4), pages 587-602.
    20. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vid:wpaper:0303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bernhard Rengs (email available below). General contact details of provider: https://www.oeaw.ac.at/vid/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.