IDEAS home Printed from https://ideas.repec.org/a/dem/demres/v30y2014i42.html
   My bibliography  Save this article

Investigating healthy life expectancy using a multi-state model in the presence of missing data and misclassification

Author

Listed:
  • Ardo van den Hout

    (University College London (UCL))

  • Ekaterina Ogurtsova

    (Max-Planck-Institut für Demografische Forschung)

  • Jutta Gampe

    (Max-Planck-Institut für Demografische Forschung)

  • Fiona Matthews

    (University of Cambridge)

Abstract

Background: A continuous-time three-state model can be used to describe change in cognitive function in the older population. State 1 corresponds to normal cognitive function, state 2 to cognitive impairment, and state 3 to dead. For statistical inference, longitudinal data are available from the UK Medical Research Council Cognitive Function and Ageing Study. Objective: The aim is statistical analysis of longitudinal multi-state data taking into account missing data and potential misclassification of state. In addition, methods for long-term prediction of the transition process are of interest, specifically when applied to the study of healthy life expectancy. Methods: Cognitive function in the older population is assumed to be stable or declining. For this reason, observed improvement of cognitive function is assumed to be caused by misclassification of either state 1 or 2. Regression models for the transition intensities are formulated to incorporate covariate information. Maximum likelihood is used for statistical inference. Results: It is shown that missing values for the state at a pre-scheduled time can easily be taken into account. Long-term prediction is explained and illustrated by the estimation of statespecific life expectancies. In addition, it is shown how microsimulation can be used to further explore predictions based on a fitted multi-state model. Conclusions: Statistical analysis of longitudinal multi-state data can take into account missing data and potential misclassification of state. With respect to long-term prediction, microsimulation is a useful tool for summarising and displaying characteristics of cognitive decline and survival. Comments: ---

Suggested Citation

  • Ardo van den Hout & Ekaterina Ogurtsova & Jutta Gampe & Fiona Matthews, 2014. "Investigating healthy life expectancy using a multi-state model in the presence of missing data and misclassification," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(42), pages 1219-1244.
  • Handle: RePEc:dem:demres:v:30:y:2014:i:42
    DOI: 10.4054/DemRes.2014.30.42
    as

    Download full text from publisher

    File URL: https://www.demographic-research.org/volumes/vol30/42/30-42.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.4054/DemRes.2014.30.42?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ben D. MacArthur & Richard O. C. Oreffo, 2005. "Bridging the gap," Nature, Nature, vol. 433(7021), pages 19-19, January.
    2. Ardo Van Den Hout & Carol Jagger & Fiona E. Matthews, 2009. "Estimating life expectancy in health and ill health by using a hidden Markov model," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 449-465, September.
    3. Glen A. Satten & Ira M. Longini, 1996. "Markov Chains with Measurement Error: Estimating the ‘True’ Course of a Marker of the Progression of Human Immunodeficiency Virus Disease," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(3), pages 275-295, September.
    4. Jackson, Christopher, 2011. "Multi-State Models for Panel Data: The msm Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 38(i08).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Dudel, 2021. "Expanding the Markov Chain Toolbox: Distributions of Occupation Times and Waiting Times," Sociological Methods & Research, , vol. 50(1), pages 401-428, February.
    2. Frans Willekens & Hein Putter, 2014. "Software for multistate analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 31(14), pages 381-420.
    3. Manuel L. Esquível & Gracinda R. Guerreiro & Matilde C. Oliveira & Pedro Corte Real, 2021. "Calibration of Transition Intensities for a Multistate Model: Application to Long-Term Care," Risks, MDPI, vol. 9(2), pages 1-17, February.
    4. Christian Dudel, 2017. "Expanding the Markov chain tool box: distributions of occupation times and waiting times," MPIDR Working Papers WP-2017-017, Max Planck Institute for Demographic Research, Rostock, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frans Willekens & Hein Putter, 2014. "Software for multistate analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 31(14), pages 381-420.
    2. Vernon T. Farewell & Li Su & Christopher Jackson, 2019. "Partially hidden multi-state modelling of a prolonged disease state defined by a composite outcome," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 696-711, October.
    3. Ardo Hout & Graciela Muniz-Terrera, 2019. "Hidden three-state survival model for bivariate longitudinal count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 529-545, July.
    4. Vanessa Taylor & Sarah Ashelford & Patricia Fell & Penelope J Goacher, 2015. "Biosciences in nurse education: is the curriculum fit for practice? Lecturers' views and recommendations from across the UK," Journal of Clinical Nursing, John Wiley & Sons, vol. 24(19-20), pages 2797-2806, October.
    5. Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
    6. Ercan Tomakin, 2014. "Teaching English Tenses (grammar) in the Turkish Texts; A Case of Simple Present Tense: Is?l Maketi Iter," International Journal of Learning and Development, Macrothink Institute, vol. 4(1), pages 115-131, March.
    7. Peter Viggo Jakobsen, 2009. "Small States, Big Influence: The Overlooked Nordic Influence on the Civilian ESDP," Journal of Common Market Studies, Wiley Blackwell, vol. 47(1), pages 81-102, January.
    8. Radha Jagannathan & Michael J. Camasso & Bagavan Das & Jale Tosun & Sadagopan Iyengar, 2017. "Family, society and the individual: determinants of entrepreneurial attitudes among youth in Chennai, South India," Journal of Global Entrepreneurship Research, Springer;UNESCO Chair in Entrepreneurship, vol. 7(1), pages 1-22, December.
    9. Qiu, Qinjing & Kawai, Reiichiro, 2022. "A decoupling principle for Markov-modulated chains," Statistics & Probability Letters, Elsevier, vol. 182(C).
    10. Tautenhahn, Susanne & Heilmeier, Hermann & Jung, Martin & Kahl, Anja & Kattge, Jens & Moffat, Antje & Wirth, Christian, 2012. "Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests," Ecological Modelling, Elsevier, vol. 233(C), pages 90-103.
    11. Jackson, Christopher, 2016. "flexsurv: A Platform for Parametric Survival Modeling in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i08).
    12. Vincenzo Galasso, 2020. "Market Reactions to Quest for Decentralization and Independence: Evidence from Catalonia," CESifo Working Paper Series 8254, CESifo.
    13. Thijs Fassaert & Matty A.S. De Wit & Wilco C. Tuinebreijer & Jeroen W. Knipscheer & Arnoud P. Verhoeff & Aartjan T.F. Beekman & Jack Dekker, 2011. "Acculturation and Psychological Distress Among Non-Western Muslim Migrants - a Population-Based Survey," International Journal of Social Psychiatry, , vol. 57(2), pages 132-143, March.
    14. Jakub Bijak & Jason D. Hilton & Eric Silverman & Viet Dung Cao, 2013. "Reforging the Wedding Ring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(27), pages 729-766.
    15. Philippe De Donder & Michel Le Breton & Eugenio Peluso, 2012. "Majority Voting in Multidimensional Policy Spaces: Kramer–Shepsle versus Stackelberg," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 14(6), pages 879-909, December.
    16. Grace Kite, 2014. "Linked in? Software and Information Technology Services in India’s Economic Development," Journal of South Asian Development, , vol. 9(2), pages 99-119, August.
    17. Spyros Arvanitis & Ursina Kubli & Martin Woerter, 2006. "University-Industry Knowledge Interaction in Switzerland: What University Scientists Think about Co-operation with Private Enterprises," KOF Working papers 06-132, KOF Swiss Economic Institute, ETH Zurich.
    18. Gaffney, Edward & McCann, Fergal, 2019. "The cyclicality in SICR: mortgage modelling under IFRS 9," ESRB Working Paper Series 92, European Systemic Risk Board.
    19. repec:jss:jstsof:38:i08 is not listed on IDEAS
    20. Falco, Paolo & Zaccagni, Sarah, 2020. "Promoting social distancing in a pandemic: Beyond the good intentions," OSF Preprints a2nys, Center for Open Science.
    21. León, Esperanza & Steele, Miriam & Palacios, Jesús & Román, Maite & Moreno, Carmen, 2018. "Parenting adoptive children: Reflective functioning and parent-child interactions. A comparative, relational and predictive study," Children and Youth Services Review, Elsevier, vol. 95(C), pages 352-360.

    More about this item

    Keywords

    micro-simulation; panel data; misclassification; cognitive functioning;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dem:demres:v:30:y:2014:i:42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editorial Office (email available below). General contact details of provider: https://www.demogr.mpg.de/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.