IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v182y2022ics0167715221002637.html
   My bibliography  Save this article

A decoupling principle for Markov-modulated chains

Author

Listed:
  • Qiu, Qinjing
  • Kawai, Reiichiro

Abstract

Markov modulation has been widely employed in various fields of application, such as finance, economics, information and computer sciences, operations research, healthcare, and bio-medicines, whereas the additional modeling flexibility comes at the cost of demanding computation and complex inference procedure. The aim of this paper is to establish a decoupling principle for Markov-modulated chains, which enables one to represent an expectation on a Markov-modulated chain by a convergent sequence written on a set of ordinary continuous-time Markov chains. The proposed decoupling principle covers a large class of Markov-modulated chains, ranging from a variety of Markov-modulated processes to time-inhomogeneous models without time-discretization of the generator matrices, and has great potential for easing the computation around Markov-modulated chains.

Suggested Citation

  • Qiu, Qinjing & Kawai, Reiichiro, 2022. "A decoupling principle for Markov-modulated chains," Statistics & Probability Letters, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:stapro:v:182:y:2022:i:c:s0167715221002637
    DOI: 10.1016/j.spl.2021.109301
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715221002637
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2021.109301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. U. Yechiali & P. Naor, 1971. "Queuing Problems with Heterogeneous Arrivals and Service," Operations Research, INFORMS, vol. 19(3), pages 722-734, June.
    2. Jackson, Christopher, 2011. "Multi-State Models for Panel Data: The msm Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 38(i08).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qinjing Qiu & Reiichiro Kawai, 2023. "Iterative Weak Approximation and Hard Bounds for Switching Diffusion," Journal of Theoretical Probability, Springer, vol. 36(2), pages 1003-1036, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongwen Guo & Mo Zhang & Paul Deane & Randy E. Bennett, 2019. "Writing Process Differences in Subgroups Reflected in Keystroke Logs," Journal of Educational and Behavioral Statistics, , vol. 44(5), pages 571-596, October.
    2. Jackson, Christopher, 2016. "flexsurv: A Platform for Parametric Survival Modeling in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i08).
    3. Ardo van den Hout & Ekaterina Ogurtsova & Jutta Gampe & Fiona Matthews, 2014. "Investigating healthy life expectancy using a multi-state model in the presence of missing data and misclassification," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(42), pages 1219-1244.
    4. Vernon T. Farewell & Li Su & Christopher Jackson, 2019. "Partially hidden multi-state modelling of a prolonged disease state defined by a composite outcome," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 696-711, October.
    5. Blaser, Nello & Vizcaya, Luisa Salazar & Estill, Janne & Zahnd, Cindy & Kalesan, Bindu & Egger, Matthias & Gsponer, Thomas & Keiser, Olivia, 2015. "gems: An R Package for Simulating from Disease Progression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i10).
    6. Gaffney, Edward & McCann, Fergal, 2019. "The cyclicality in SICR: mortgage modelling under IFRS 9," ESRB Working Paper Series 92, European Systemic Risk Board.
    7. Król, Agnieszka & Saint-Pierre, Philippe, 2015. "SemiMarkov: An R Package for Parametric Estimation in Multi-State Semi-Markov Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 66(i06).
    8. Franck Maunoury & Christian Farinetto & Stéphane Ruckly & Jeremy Guenezan & Jean-Christophe Lucet & Alain Lepape & Julien Pascal & Bertrand Souweine & Olivier Mimoz & Jean-François Timsit, 2018. "Cost-effectiveness analysis of chlorhexidine-alcohol versus povidone iodine-alcohol solution in the prevention of intravascular-catheter-related bloodstream infections in France," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-16, May.
    9. Biagini, Francesca & Groll, Andreas & Widenmann, Jan, 2013. "Intensity-based premium evaluation for unemployment insurance products," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 302-316.
    10. Nimrod Dvir & Refael Hassin & Uri Yechiali, 2020. "Strategic behaviour in a tandem queue with alternating server," Queueing Systems: Theory and Applications, Springer, vol. 96(3), pages 205-244, December.
    11. Touraine, Célia & Gerds, Thomas A. & Joly, Pierre, 2017. "SmoothHazard: An R Package for Fitting Regression Models to Interval-Censored Observations of Illness-Death Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 79(i07).
    12. Morell, Joe & Rice, Jonathan & Shaw, Frances, 2022. "A Framework for Macroprudential Stress Testing," Research Technical Papers 7/RT/22, Central Bank of Ireland.
    13. McCann, Fergal, 2014. "Modelling default transitions in the UK mortgage market," Research Technical Papers 18/RT/14, Central Bank of Ireland.
    14. Piccarreta, Raffaella & Bonetti, Marco, 2019. "Assessing and comparing models for sequence data by microsimulation (with Supplementary Material)," SocArXiv 3mcfp, Center for Open Science.
    15. Sharples, Linda D., 2018. "The role of statistics in the era of big data: Electronic health records for healthcare research," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 105-110.
    16. Alex Bottle & Chiara Maria Ventura & Kumar Dharmarajan & Paul Aylin & Francesca Ieva & Anna Maria Paganoni, 2018. "Regional variation in hospitalisation and mortality in heart failure: comparison of England and Lombardy using multistate modelling," Health Care Management Science, Springer, vol. 21(2), pages 292-304, June.
    17. Jianjun Li & Liwei Liu & Tao Jiang, 2018. "Analysis of an M/G/1 queue with vacations and multiple phases of operation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 51-72, February.
    18. Wildhaber, Mark L. & Albers, Janice L. & Green, Nicholas S. & Moran, Edward H., 2017. "A fully-stochasticized, age-structured population model for population viability analysis of fish: Lower Missouri River endangered pallid sturgeon example," Ecological Modelling, Elsevier, vol. 359(C), pages 434-448.
    19. Claire Williams & James D. Lewsey & Daniel F. Mackay & Andrew H. Briggs, 2017. "Estimation of Survival Probabilities for Use in Cost-effectiveness Analyses: A Comparison of a Multi-state Modeling Survival Analysis Approach with Partitioned Survival and Markov Decision-Analytic Mo," Medical Decision Making, , vol. 37(4), pages 427-439, May.
    20. Alexandra Grand & Regina Dittrich & Brian Francis, 2015. "Markov models of dependence in longitudinal paired comparisons: an application to course design," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 237-257, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:182:y:2022:i:c:s0167715221002637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.