IDEAS home Printed from https://ideas.repec.org/a/das/njaigs/v6y2024i1p210-229id242.html
   My bibliography  Save this article

AI-Assisted Medical Imaging and Heart Disease Diagnosis: A Deep Learning Approach for Automated Analysis and Enhanced Prediction Using Ensemble Classifiers

Author

Listed:
  • NIDADAVOLU VENKAT DURGA SAI SIVA VARA PRASAD RAJU
  • PENMETSA NAVEENA DEVI

Abstract

In the medical field, early detection of cardiovascular problems is a challenging task. This research aims to improve the accuracy of heart disease prediction through the application of machine learning techniques. Cardiovascular diseases (CVDs), including coronary artery disease, stroke, and peripheral artery disease, are the leading cause of mortality worldwide. Early identification of individuals at high risk of developing CVDs is crucial for preventing adverse cardiovascular events through medical interventions and lifestyle modifications. Machine learning (ML) offers innovative techniques to build predictive models that can accurately estimate CVD risk based on patient data. This review provides a comprehensive overview of recent research on applying ML algorithms for CVD risk assessment. The paper begins with background on CVD epidemiology and risk factors, followed by sections on ML methodology, feature selection techniques, model evaluation metrics, public CVD datasets, and ethical considerations. The main focus is a critical analysis of over 50 studies from 2015-2022 that developed ML models for predicting various CVD outcomes. The performance of classical ML algorithms like logistic regression and random forest is compared with deep learning methods like convolution and recurrent neural networks across diverse patient cohorts. Challenges and limitations around model interpretability, data quality, feature engineering, and external validation are discussed. Overall, the review demonstrates that ML has strong potential to enhance individualized CVD risk estimation and enable personalized preventive care, although more methodological refinement and clinical validation are warranted before full-scale clinical implementation.

Suggested Citation

  • Nidadavolu Venkat Durga Sai Siva Vara Prasad Raju & Penmetsa Naveena Devi, 2024. "AI-Assisted Medical Imaging and Heart Disease Diagnosis: A Deep Learning Approach for Automated Analysis and Enhanced Prediction Using Ensemble Classifiers," Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023, Open Knowledge, vol. 6(1), pages 210-229.
  • Handle: RePEc:das:njaigs:v:6:y:2024:i:1:p:210-229:id:242
    as

    Download full text from publisher

    File URL: https://newjaigs.com/index.php/JAIGS/article/view/242
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen F Weng & Jenna Reps & Joe Kai & Jonathan M Garibaldi & Nadeem Qureshi, 2017. "Can machine-learning improve cardiovascular risk prediction using routine clinical data?," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirza Rizwan Sajid & Bader A. Almehmadi & Waqas Sami & Mansour K. Alzahrani & Noryanti Muhammad & Christophe Chesneau & Asif Hanif & Arshad Ali Khan & Ahmad Shahbaz, 2021. "Development of Nonlaboratory-Based Risk Prediction Models for Cardiovascular Diseases Using Conventional and Machine Learning Approaches," IJERPH, MDPI, vol. 18(23), pages 1-16, November.
    2. Salvatore Tedesco & Martina Andrulli & Markus Åkerlund Larsson & Daniel Kelly & Antti Alamäki & Suzanne Timmons & John Barton & Joan Condell & Brendan O’Flynn & Anna Nordström, 2021. "Comparison of Machine Learning Techniques for Mortality Prediction in a Prospective Cohort of Older Adults," IJERPH, MDPI, vol. 18(23), pages 1-18, December.
    3. Ajay Dev & Sanjay Kumar Malik, 2021. "Artificial Bee Colony Optimized Deep Neural Network Model for Handling Imbalanced Stroke Data: ABC-DNN for Prediction of Stroke," International Journal of E-Health and Medical Communications (IJEHMC), IGI Global, vol. 12(5), pages 67-83, September.
    4. Feihan Lu & Yao Zheng & Harrington Cleveland & Chris Burton & David Madigan, 2018. "Bayesian hierarchical vector autoregressive models for patient-level predictive modeling," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-27, December.
    5. Shinya Suzuki & Takeshi Yamashita & Tsuyoshi Sakama & Takuto Arita & Naoharu Yagi & Takayuki Otsuka & Hiroaki Semba & Hiroto Kano & Shunsuke Matsuno & Yuko Kato & Tokuhisa Uejima & Yuji Oikawa & Minor, 2019. "Comparison of risk models for mortality and cardiovascular events between machine learning and conventional logistic regression analysis," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-14, September.
    6. Ying Wang & Zhicheng Du & Wayne R. Lawrence & Yun Huang & Yu Deng & Yuantao Hao, 2019. "Predicting Hepatitis B Virus Infection Based on Health Examination Data of Community Population," IJERPH, MDPI, vol. 16(23), pages 1-13, December.
    7. Francesco Cappelli & Gianfranco Castronuovo & Salvatore Grimaldi & Vito Telesca, 2024. "Random Forest and Feature Importance Measures for Discriminating the Most Influential Environmental Factors in Predicting Cardiovascular and Respiratory Diseases," IJERPH, MDPI, vol. 21(7), pages 1-21, July.
    8. Shelda Sajeev & Stephanie Champion & Alline Beleigoli & Derek Chew & Richard L. Reed & Dianna J. Magliano & Jonathan E. Shaw & Roger L. Milne & Sarah Appleton & Tiffany K. Gill & Anthony Maeder, 2021. "Predicting Australian Adults at High Risk of Cardiovascular Disease Mortality Using Standard Risk Factors and Machine Learning," IJERPH, MDPI, vol. 18(6), pages 1-14, March.
    9. Emily J MacKay & Michael D Stubna & Corey Chivers & Michael E Draugelis & William J Hanson & Nimesh D Desai & Peter W Groeneveld, 2021. "Application of machine learning approaches to administrative claims data to predict clinical outcomes in medical and surgical patient populations," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-14, June.
    10. Woo Suk Hong & Adrian Daniel Haimovich & R Andrew Taylor, 2018. "Predicting hospital admission at emergency department triage using machine learning," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-13, July.
    11. Adrian Richter & Julia Truthmann & Jean-François Chenot & Carsten Oliver Schmidt, 2021. "Predicting Physician Consultations for Low Back Pain Using Claims Data and Population-Based Cohort Data—An Interpretable Machine Learning Approach," IJERPH, MDPI, vol. 18(22), pages 1-14, November.
    12. Gian Luca Di Tanna & Heidi Wirtz & Karen L Burrows & Gary Globe, 2020. "Evaluating risk prediction models for adults with heart failure: A systematic literature review," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-23, January.
    13. Rafał Niemiec & Irmina Morawska & Maria Stec & Wiktoria Kuczmik & Andrzej S. Swinarew & Arkadiusz Stanula & Katarzyna Mizia-Stec, 2022. "ARNI in HFrEF—One-Centre Experience in the Era before the 2021 ESC HF Recommendations," IJERPH, MDPI, vol. 19(4), pages 1-12, February.
    14. Dohyun Kim & Sungmin You & Soonwon So & Jongshill Lee & Sunhyun Yook & Dong Pyo Jang & In Young Kim & Eunkyoung Park & Kyeongwon Cho & Won Chul Cha & Dong Wook Shin & Baek Hwan Cho & Hoon-Ki Park, 2018. "A data-driven artificial intelligence model for remote triage in the prehospital environment," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-14, October.
    15. Hoa Thi Nguyen & Claudia M. Denkinger & Stephan Brenner & Lisa Koeppel & Lucia Brugnara & Robin Burk & Michael Knop & Till Bärnighausen & Andreas Deckert & Manuela De Allegri, 2023. "Cost and cost-effectiveness of four different SARS-CoV-2 active surveillance strategies: evidence from a randomised control trial in Germany," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 24(9), pages 1545-1559, December.
    16. Sharan Srinivas, 2020. "A Machine Learning-Based Approach for Predicting Patient Punctuality in Ambulatory Care Centers," IJERPH, MDPI, vol. 17(10), pages 1-15, May.
    17. Syed Waseem Abbas Sherazi & Jang-Whan Bae & Jong Yun Lee, 2021. "A soft voting ensemble classifier for early prediction and diagnosis of occurrences of major adverse cardiovascular events for STEMI and NSTEMI during 2-year follow-up in patients with acute coronary ," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-20, June.
    18. Stephen F Weng & Luis Vaz & Nadeem Qureshi & Joe Kai, 2019. "Prediction of premature all-cause mortality: A prospective general population cohort study comparing machine-learning and standard epidemiological approaches," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-22, March.
    19. Alexander Engels & Katrin C Reber & Ivonne Lindlbauer & Kilian Rapp & Gisela Büchele & Jochen Klenk & Andreas Meid & Clemens Becker & Hans-Helmut König, 2020. "Osteoporotic hip fracture prediction from risk factors available in administrative claims data – A machine learning approach," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-14, May.
    20. Cynthia Rudin & Berk Ustun, 2018. "Optimized Scoring Systems: Toward Trust in Machine Learning for Healthcare and Criminal Justice," Interfaces, INFORMS, vol. 48(5), pages 449-466, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:das:njaigs:v:6:y:2024:i:1:p:210-229:id:242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Open Knowledge (email available below). General contact details of provider: https://newjaigs.com/index.php/JAIGS/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.