IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i23p12586-d690906.html
   My bibliography  Save this article

Development of Nonlaboratory-Based Risk Prediction Models for Cardiovascular Diseases Using Conventional and Machine Learning Approaches

Author

Listed:
  • Mirza Rizwan Sajid

    (Department of Statistics, University of Gujrat, Gujrat 50700, Pakistan)

  • Bader A. Almehmadi

    (Department of Internal Medicine, College of Medicine, Majmaah University, Almajmaah 11952, Saudi Arabia)

  • Waqas Sami

    (Department of Community Medicine and Public Health, College of Medicine, Majmaah University, Almajmaah 11952, Saudi Arabia
    Azra Naheed Medical College, Superior University, Lahore 54000, Pakistan)

  • Mansour K. Alzahrani

    (Department of Family Medicine, College of Medicine, Majmaah University, Almajmaah 11952, Saudi Arabia)

  • Noryanti Muhammad

    (Centre of Excellence for Data Science and Artificial Intelligence, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
    Centre for Mathematical Sciences, College of Computing and Applied Sciences, Universiti Malaysia Pahang, Kuantan 26300, Malaysia)

  • Christophe Chesneau

    (Department of Mathematics, University of Caen-Normandie, 14032 Caen, France)

  • Asif Hanif

    (University Institute of Public health, Faculty of Allied Health Sciences, University of Lahore, Lahore 54000, Pakistan)

  • Arshad Ali Khan

    (Faculty of Computing, Universiti Malaysia Pahang, Pekan 26600, Malaysia)

  • Ahmad Shahbaz

    (Department of Cardiac Surgery, Punjab Institute of Cardiology, Lahore 54000, Pakistan)

Abstract

Criticism of the implementation of existing risk prediction models (RPMs) for cardiovascular diseases (CVDs) in new populations motivates researchers to develop regional models. The predominant usage of laboratory features in these RPMs is also causing reproducibility issues in low–middle-income countries (LMICs). Further, conventional logistic regression analysis (LRA) does not consider non-linear associations and interaction terms in developing these RPMs, which might oversimplify the phenomenon. This study aims to develop alternative machine learning (ML)-based RPMs that may perform better at predicting CVD status using nonlaboratory features in comparison to conventional RPMs. The data was based on a case–control study conducted at the Punjab Institute of Cardiology, Pakistan. Data from 460 subjects, aged between 30 and 76 years, with (1:1) gender-based matching, was collected. We tested various ML models to identify the best model/models considering LRA as a baseline RPM. An artificial neural network and a linear support vector machine outperformed the conventional RPM in the majority of performance matrices. The predictive accuracies of the best performed ML-based RPMs were between 80.86 and 81.09% and were found to be higher than 79.56% for the baseline RPM. The discriminating capabilities of the ML-based RPMs were also comparable to baseline RPMs. Further, ML-based RPMs identified substantially different orders of features as compared to baseline RPM. This study concludes that nonlaboratory feature-based RPMs can be a good choice for early risk assessment of CVDs in LMICs. ML-based RPMs can identify better order of features as compared to the conventional approach, which subsequently provided models with improved prognostic capabilities.

Suggested Citation

  • Mirza Rizwan Sajid & Bader A. Almehmadi & Waqas Sami & Mansour K. Alzahrani & Noryanti Muhammad & Christophe Chesneau & Asif Hanif & Arshad Ali Khan & Ahmad Shahbaz, 2021. "Development of Nonlaboratory-Based Risk Prediction Models for Cardiovascular Diseases Using Conventional and Machine Learning Approaches," IJERPH, MDPI, vol. 18(23), pages 1-16, November.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:23:p:12586-:d:690906
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/23/12586/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/23/12586/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen F Weng & Jenna Reps & Joe Kai & Jonathan M Garibaldi & Nadeem Qureshi, 2017. "Can machine-learning improve cardiovascular risk prediction using routine clinical data?," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
    2. Sabri Boughorbel & Fethi Jarray & Mohammed El-Anbari, 2017. "Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-17, June.
    3. Shelda Sajeev & Stephanie Champion & Alline Beleigoli & Derek Chew & Richard L. Reed & Dianna J. Magliano & Jonathan E. Shaw & Roger L. Milne & Sarah Appleton & Tiffany K. Gill & Anthony Maeder, 2021. "Predicting Australian Adults at High Risk of Cardiovascular Disease Mortality Using Standard Risk Factors and Machine Learning," IJERPH, MDPI, vol. 18(6), pages 1-14, March.
    4. Shinya Suzuki & Takeshi Yamashita & Tsuyoshi Sakama & Takuto Arita & Naoharu Yagi & Takayuki Otsuka & Hiroaki Semba & Hiroto Kano & Shunsuke Matsuno & Yuko Kato & Tokuhisa Uejima & Yuji Oikawa & Minor, 2019. "Comparison of risk models for mortality and cardiovascular events between machine learning and conventional logistic regression analysis," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvatore Tedesco & Martina Andrulli & Markus Åkerlund Larsson & Daniel Kelly & Antti Alamäki & Suzanne Timmons & John Barton & Joan Condell & Brendan O’Flynn & Anna Nordström, 2021. "Comparison of Machine Learning Techniques for Mortality Prediction in a Prospective Cohort of Older Adults," IJERPH, MDPI, vol. 18(23), pages 1-18, December.
    2. Ajay Dev & Sanjay Kumar Malik, 2021. "Artificial Bee Colony Optimized Deep Neural Network Model for Handling Imbalanced Stroke Data: ABC-DNN for Prediction of Stroke," International Journal of E-Health and Medical Communications (IJEHMC), IGI Global, vol. 12(5), pages 67-83, September.
    3. Feihan Lu & Yao Zheng & Harrington Cleveland & Chris Burton & David Madigan, 2018. "Bayesian hierarchical vector autoregressive models for patient-level predictive modeling," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-27, December.
    4. Wang, Xinlin & Yao, Zhihao & Papaefthymiou, Marios, 2023. "A real-time electrical load forecasting and unsupervised anomaly detection framework," Applied Energy, Elsevier, vol. 330(PA).
    5. Shinya Suzuki & Takeshi Yamashita & Tsuyoshi Sakama & Takuto Arita & Naoharu Yagi & Takayuki Otsuka & Hiroaki Semba & Hiroto Kano & Shunsuke Matsuno & Yuko Kato & Tokuhisa Uejima & Yuji Oikawa & Minor, 2019. "Comparison of risk models for mortality and cardiovascular events between machine learning and conventional logistic regression analysis," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-14, September.
    6. Ying Wang & Zhicheng Du & Wayne R. Lawrence & Yun Huang & Yu Deng & Yuantao Hao, 2019. "Predicting Hepatitis B Virus Infection Based on Health Examination Data of Community Population," IJERPH, MDPI, vol. 16(23), pages 1-13, December.
    7. Christian Kauten & Ashish Gupta & Xiao Qin & Glenn Richey, 2022. "Predicting Blood Donors Using Machine Learning Techniques," Information Systems Frontiers, Springer, vol. 24(5), pages 1547-1562, October.
    8. Francesco Cappelli & Gianfranco Castronuovo & Salvatore Grimaldi & Vito Telesca, 2024. "Random Forest and Feature Importance Measures for Discriminating the Most Influential Environmental Factors in Predicting Cardiovascular and Respiratory Diseases," IJERPH, MDPI, vol. 21(7), pages 1-21, July.
    9. Ruchika Malhotra & Megha Khanna, 2023. "On the applicability of search-based algorithms for software change prediction," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 55-73, February.
    10. Maela Madel L. Cahigas & Ardvin Kester S. Ong & Yogi Tri Prasetyo, 2023. "Super Typhoon Rai’s Impacts on Siargao Tourism: Deciphering Tourists’ Revisit Intentions through Machine-Learning Algorithms," Sustainability, MDPI, vol. 15(11), pages 1-29, May.
    11. David Cemernek & Sandra Cemernek & Heimo Gursch & Ashwini Pandeshwar & Thomas Leitner & Matthias Berger & Gerald Klösch & Roman Kern, 2022. "Machine learning in continuous casting of steel: a state-of-the-art survey," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1561-1579, August.
    12. Zhou, Xiaoyi & Lu, Pan & Zheng, Zijian & Tolliver, Denver & Keramati, Amin, 2020. "Accident Prediction Accuracy Assessment for Highway-Rail Grade Crossings Using Random Forest Algorithm Compared with Decision Tree," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    13. Victor Olsavszky & Mihnea Dosius & Cristian Vladescu & Johannes Benecke, 2020. "Time Series Analysis and Forecasting with Automated Machine Learning on a National ICD-10 Database," IJERPH, MDPI, vol. 17(14), pages 1-17, July.
    14. Shelda Sajeev & Stephanie Champion & Alline Beleigoli & Derek Chew & Richard L. Reed & Dianna J. Magliano & Jonathan E. Shaw & Roger L. Milne & Sarah Appleton & Tiffany K. Gill & Anthony Maeder, 2021. "Predicting Australian Adults at High Risk of Cardiovascular Disease Mortality Using Standard Risk Factors and Machine Learning," IJERPH, MDPI, vol. 18(6), pages 1-14, March.
    15. Bikeri Adline & Kazushi Ikeda, 2023. "A Hawkes Model Approach to Modeling Price Spikes in the Japanese Electricity Market," Energies, MDPI, vol. 16(4), pages 1-20, February.
    16. Manuel Casal-Guisande & María Torres-Durán & Mar Mosteiro-Añón & Jorge Cerqueiro-Pequeño & José-Benito Bouza-Rodríguez & Alberto Fernández-Villar & Alberto Comesaña-Campos, 2023. "Design and Conceptual Proposal of an Intelligent Clinical Decision Support System for the Diagnosis of Suspicious Obstructive Sleep Apnea Patients from Health Profile," IJERPH, MDPI, vol. 20(4), pages 1-31, February.
    17. Emily J MacKay & Michael D Stubna & Corey Chivers & Michael E Draugelis & William J Hanson & Nimesh D Desai & Peter W Groeneveld, 2021. "Application of machine learning approaches to administrative claims data to predict clinical outcomes in medical and surgical patient populations," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-14, June.
    18. Schade, Philipp & Schuhmacher, Monika C., 2023. "Predicting entrepreneurial activity using machine learning," Journal of Business Venturing Insights, Elsevier, vol. 19(C).
    19. Wang, Delu & Tong, Xian & Wang, Yadong, 2020. "An early risk warning system for Outward Foreign Direct Investment in Mineral Resource-based enterprises using multi-classifiers fusion," Resources Policy, Elsevier, vol. 66(C).
    20. Woo Suk Hong & Adrian Daniel Haimovich & R Andrew Taylor, 2018. "Predicting hospital admission at emergency department triage using machine learning," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:23:p:12586-:d:690906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.