IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i23p12586-d690906.html
   My bibliography  Save this article

Development of Nonlaboratory-Based Risk Prediction Models for Cardiovascular Diseases Using Conventional and Machine Learning Approaches

Author

Listed:
  • Mirza Rizwan Sajid

    (Department of Statistics, University of Gujrat, Gujrat 50700, Pakistan)

  • Bader A. Almehmadi

    (Department of Internal Medicine, College of Medicine, Majmaah University, Almajmaah 11952, Saudi Arabia)

  • Waqas Sami

    (Department of Community Medicine and Public Health, College of Medicine, Majmaah University, Almajmaah 11952, Saudi Arabia
    Azra Naheed Medical College, Superior University, Lahore 54000, Pakistan)

  • Mansour K. Alzahrani

    (Department of Family Medicine, College of Medicine, Majmaah University, Almajmaah 11952, Saudi Arabia)

  • Noryanti Muhammad

    (Centre of Excellence for Data Science and Artificial Intelligence, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
    Centre for Mathematical Sciences, College of Computing and Applied Sciences, Universiti Malaysia Pahang, Kuantan 26300, Malaysia)

  • Christophe Chesneau

    (Department of Mathematics, University of Caen-Normandie, 14032 Caen, France)

  • Asif Hanif

    (University Institute of Public health, Faculty of Allied Health Sciences, University of Lahore, Lahore 54000, Pakistan)

  • Arshad Ali Khan

    (Faculty of Computing, Universiti Malaysia Pahang, Pekan 26600, Malaysia)

  • Ahmad Shahbaz

    (Department of Cardiac Surgery, Punjab Institute of Cardiology, Lahore 54000, Pakistan)

Abstract

Criticism of the implementation of existing risk prediction models (RPMs) for cardiovascular diseases (CVDs) in new populations motivates researchers to develop regional models. The predominant usage of laboratory features in these RPMs is also causing reproducibility issues in low–middle-income countries (LMICs). Further, conventional logistic regression analysis (LRA) does not consider non-linear associations and interaction terms in developing these RPMs, which might oversimplify the phenomenon. This study aims to develop alternative machine learning (ML)-based RPMs that may perform better at predicting CVD status using nonlaboratory features in comparison to conventional RPMs. The data was based on a case–control study conducted at the Punjab Institute of Cardiology, Pakistan. Data from 460 subjects, aged between 30 and 76 years, with (1:1) gender-based matching, was collected. We tested various ML models to identify the best model/models considering LRA as a baseline RPM. An artificial neural network and a linear support vector machine outperformed the conventional RPM in the majority of performance matrices. The predictive accuracies of the best performed ML-based RPMs were between 80.86 and 81.09% and were found to be higher than 79.56% for the baseline RPM. The discriminating capabilities of the ML-based RPMs were also comparable to baseline RPMs. Further, ML-based RPMs identified substantially different orders of features as compared to baseline RPM. This study concludes that nonlaboratory feature-based RPMs can be a good choice for early risk assessment of CVDs in LMICs. ML-based RPMs can identify better order of features as compared to the conventional approach, which subsequently provided models with improved prognostic capabilities.

Suggested Citation

  • Mirza Rizwan Sajid & Bader A. Almehmadi & Waqas Sami & Mansour K. Alzahrani & Noryanti Muhammad & Christophe Chesneau & Asif Hanif & Arshad Ali Khan & Ahmad Shahbaz, 2021. "Development of Nonlaboratory-Based Risk Prediction Models for Cardiovascular Diseases Using Conventional and Machine Learning Approaches," IJERPH, MDPI, vol. 18(23), pages 1-16, November.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:23:p:12586-:d:690906
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/23/12586/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/23/12586/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen F Weng & Jenna Reps & Joe Kai & Jonathan M Garibaldi & Nadeem Qureshi, 2017. "Can machine-learning improve cardiovascular risk prediction using routine clinical data?," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-14, April.
    2. Sabri Boughorbel & Fethi Jarray & Mohammed El-Anbari, 2017. "Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-17, June.
    3. Shelda Sajeev & Stephanie Champion & Alline Beleigoli & Derek Chew & Richard L. Reed & Dianna J. Magliano & Jonathan E. Shaw & Roger L. Milne & Sarah Appleton & Tiffany K. Gill & Anthony Maeder, 2021. "Predicting Australian Adults at High Risk of Cardiovascular Disease Mortality Using Standard Risk Factors and Machine Learning," IJERPH, MDPI, vol. 18(6), pages 1-14, March.
    4. Shinya Suzuki & Takeshi Yamashita & Tsuyoshi Sakama & Takuto Arita & Naoharu Yagi & Takayuki Otsuka & Hiroaki Semba & Hiroto Kano & Shunsuke Matsuno & Yuko Kato & Tokuhisa Uejima & Yuji Oikawa & Minor, 2019. "Comparison of risk models for mortality and cardiovascular events between machine learning and conventional logistic regression analysis," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvatore Tedesco & Martina Andrulli & Markus Åkerlund Larsson & Daniel Kelly & Antti Alamäki & Suzanne Timmons & John Barton & Joan Condell & Brendan O’Flynn & Anna Nordström, 2021. "Comparison of Machine Learning Techniques for Mortality Prediction in a Prospective Cohort of Older Adults," IJERPH, MDPI, vol. 18(23), pages 1-18, December.
    2. Ying Wang & Zhicheng Du & Wayne R. Lawrence & Yun Huang & Yu Deng & Yuantao Hao, 2019. "Predicting Hepatitis B Virus Infection Based on Health Examination Data of Community Population," IJERPH, MDPI, vol. 16(23), pages 1-13, December.
    3. Christian Kauten & Ashish Gupta & Xiao Qin & Glenn Richey, 2022. "Predicting Blood Donors Using Machine Learning Techniques," Information Systems Frontiers, Springer, vol. 24(5), pages 1547-1562, October.
    4. David Cemernek & Sandra Cemernek & Heimo Gursch & Ashwini Pandeshwar & Thomas Leitner & Matthias Berger & Gerald Klösch & Roman Kern, 2022. "Machine learning in continuous casting of steel: a state-of-the-art survey," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1561-1579, August.
    5. Shelda Sajeev & Stephanie Champion & Alline Beleigoli & Derek Chew & Richard L. Reed & Dianna J. Magliano & Jonathan E. Shaw & Roger L. Milne & Sarah Appleton & Tiffany K. Gill & Anthony Maeder, 2021. "Predicting Australian Adults at High Risk of Cardiovascular Disease Mortality Using Standard Risk Factors and Machine Learning," IJERPH, MDPI, vol. 18(6), pages 1-14, March.
    6. Schade, Philipp & Schuhmacher, Monika C., 2023. "Predicting entrepreneurial activity using machine learning," Journal of Business Venturing Insights, Elsevier, vol. 19(C).
    7. Wang, Delu & Tong, Xian & Wang, Yadong, 2020. "An early risk warning system for Outward Foreign Direct Investment in Mineral Resource-based enterprises using multi-classifiers fusion," Resources Policy, Elsevier, vol. 66(C).
    8. Woo Suk Hong & Adrian Daniel Haimovich & R Andrew Taylor, 2018. "Predicting hospital admission at emergency department triage using machine learning," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-13, July.
    9. Gnekpe, Christian & Tchuente, Dieudonné & Nyawa, Serge & Dey, Prasanta Kumar, 2024. "Energy Performance of Building Refurbishments: Predictive and Prescriptive AI-based Machine Learning Approaches," Journal of Business Research, Elsevier, vol. 183(C).
    10. Kouadri, Abdelmalek & Hajji, Mansour & Harkat, Mohamed-Faouzi & Abodayeh, Kamaleldin & Mansouri, Majdi & Nounou, Hazem & Nounou, Mohamed, 2020. "Hidden Markov model based principal component analysis for intelligent fault diagnosis of wind energy converter systems," Renewable Energy, Elsevier, vol. 150(C), pages 598-606.
    11. López-Díaz, María Concepción & López-Díaz, Miguel & Martínez-Fernández, Sergio, 2023. "On the optimal binary classifier with an application," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
    12. Manuel Casal-Guisande & Jorge Cerqueiro-Pequeño & José-Benito Bouza-Rodríguez & Alberto Comesaña-Campos, 2023. "Integration of the Wang & Mendel Algorithm into the Application of Fuzzy Expert Systems to Intelligent Clinical Decision Support Systems," Mathematics, MDPI, vol. 11(11), pages 1-33, May.
    13. Salvatore Carta & Alessandro Sebastian Podda & Diego Reforgiato Recupero & Roberto Saia, 2020. "A Local Feature Engineering Strategy to Improve Network Anomaly Detection," Future Internet, MDPI, vol. 12(10), pages 1-30, October.
    14. Tan Kai Noel Quah & Yi Wei Daniel Tay & Jian Hui Lim & Ming Jen Tan & Teck Neng Wong & King Ho Holden Li, 2023. "Concrete 3D Printing: Process Parameters for Process Control, Monitoring and Diagnosis in Automation and Construction," Mathematics, MDPI, vol. 11(6), pages 1-34, March.
    15. Nidadavolu Venkat Durga Sai Siva Vara Prasad Raju & Penmetsa Naveena Devi, 2024. "AI-Assisted Medical Imaging and Heart Disease Diagnosis: A Deep Learning Approach for Automated Analysis and Enhanced Prediction Using Ensemble Classifiers," Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023, Open Knowledge, vol. 6(1), pages 210-229.
    16. Hoa Thi Nguyen & Claudia M. Denkinger & Stephan Brenner & Lisa Koeppel & Lucia Brugnara & Robin Burk & Michael Knop & Till Bärnighausen & Andreas Deckert & Manuela De Allegri, 2023. "Cost and cost-effectiveness of four different SARS-CoV-2 active surveillance strategies: evidence from a randomised control trial in Germany," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 24(9), pages 1545-1559, December.
    17. Sharan Srinivas, 2020. "A Machine Learning-Based Approach for Predicting Patient Punctuality in Ambulatory Care Centers," IJERPH, MDPI, vol. 17(10), pages 1-15, May.
    18. Syed Waseem Abbas Sherazi & Jang-Whan Bae & Jong Yun Lee, 2021. "A soft voting ensemble classifier for early prediction and diagnosis of occurrences of major adverse cardiovascular events for STEMI and NSTEMI during 2-year follow-up in patients with acute coronary ," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-20, June.
    19. Alexander Engels & Katrin C Reber & Ivonne Lindlbauer & Kilian Rapp & Gisela Büchele & Jochen Klenk & Andreas Meid & Clemens Becker & Hans-Helmut König, 2020. "Osteoporotic hip fracture prediction from risk factors available in administrative claims data – A machine learning approach," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-14, May.
    20. Pablo Gonzalez Ginestet & Ales Kotalik & David M. Vock & Julian Wolfson & Erin E. Gabriel, 2021. "Stacked inverse probability of censoring weighted bagging: A case study in the InfCareHIV Register," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 51-65, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:23:p:12586-:d:690906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.