IDEAS home Printed from https://ideas.repec.org/a/cup/macdyn/v21y2017i02p336-361_00.html
   My bibliography  Save this article

A Nonlinear Programming Method For Dynamic Programming

Author

Listed:
  • Cai, Yongyang
  • Judd, Kenneth L.
  • Lontzek, Thomas S.
  • Michelangeli, Valentina
  • Su, Che-Lin

Abstract

A nonlinear programming formulation is introduced to solve infinite-horizon dynamic programming problems. This extends the linear approach to dynamic programming by using ideas from approximation theory to approximate value functions. Our numerical results show that this nonlinear programming is efficient and accurate, and avoids inefficient discretization.

Suggested Citation

  • Cai, Yongyang & Judd, Kenneth L. & Lontzek, Thomas S. & Michelangeli, Valentina & Su, Che-Lin, 2017. "A Nonlinear Programming Method For Dynamic Programming," Macroeconomic Dynamics, Cambridge University Press, vol. 21(2), pages 336-361, March.
  • Handle: RePEc:cup:macdyn:v:21:y:2017:i:02:p:336-361_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1365100515000528/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Juillard, Michel & Villemot, Sébastien, 2011. "Multi-country real business cycle models: Accuracy tests and test bench," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 178-185, February.
    2. Kenneth L. Judd, 1998. "Numerical Methods in Economics," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262100711, April.
    3. Che‐Lin Su & Kenneth L. Judd, 2012. "Constrained Optimization Approaches to Estimation of Structural Models," Econometrica, Econometric Society, vol. 80(5), pages 2213-2230, September.
    4. D. P. de Farias & B. Van Roy, 2003. "The Linear Programming Approach to Approximate Dynamic Programming," Operations Research, INFORMS, vol. 51(6), pages 850-865, December.
    5. Yongyang Cai & Kenneth L. Judd, 2010. "Stable and Efficient Computational Methods for Dynamic Programming," Journal of the European Economic Association, MIT Press, vol. 8(2-3), pages 626-634, 04-05.
    6. Den Haan, Wouter J. & Judd, Kenneth L. & Juillard, Michel, 2011. "Computational suite of models with heterogeneous agents II: Multi-country real business cycle models," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 175-177, February.
    7. Trick, Michael A. & Zin, Stanley E., 1997. "Spline Approximations To Value Functions," Macroeconomic Dynamics, Cambridge University Press, vol. 1(1), pages 255-277, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongyang Cai & Kenneth Judd & Greg Thain & Stephen Wright, 2015. "Solving Dynamic Programming Problems on a Computational Grid," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 261-284, February.
    2. Ulmer, Marlin W. & Thomas, Barrett W., 2020. "Meso-parametric value function approximation for dynamic customer acceptances in delivery routing," European Journal of Operational Research, Elsevier, vol. 285(1), pages 183-195.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongyang Cai & Kenneth Judd, 2015. "Dynamic programming with Hermite approximation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 81(3), pages 245-267, June.
    2. Yongyang Cai & Kenneth Judd & Greg Thain & Stephen Wright, 2015. "Solving Dynamic Programming Problems on a Computational Grid," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 261-284, February.
    3. Kollmann, Robert & Maliar, Serguei & Malin, Benjamin A. & Pichler, Paul, 2011. "Comparison of solutions to the multi-country Real Business Cycle model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 186-202, February.
    4. Maliar, Serguei & Maliar, Lilia & Judd, Kenneth, 2011. "Solving the multi-country real business cycle model using ergodic set methods," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 207-228, February.
    5. Malin, Benjamin A. & Krueger, Dirk & Kubler, Felix, 2011. "Solving the multi-country real business cycle model using a Smolyak-collocation method," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 229-239, February.
    6. Aryan Eftekhari & Simon Scheidegger, 2022. "High-Dimensional Dynamic Stochastic Model Representation," Papers 2202.06555, arXiv.org.
    7. Kollmann, Robert & Kim, Jinill & Kim, Sunghyun H., 2011. "Solving the multi-country Real Business Cycle model using a perturbation method," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 203-206, February.
    8. Arellano, Cristina & Maliar, Lilia & Maliar, Serguei & Tsyrennikov, Viktor, 2016. "Envelope condition method with an application to default risk models," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 436-459.
    9. Yongyang Cai & Kenneth Judd & Jevgenijs Steinbuks, 2017. "A nonlinear certainty equivalent approximation method for dynamic stochastic problems," Quantitative Economics, Econometric Society, vol. 8(1), pages 117-147, March.
    10. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2010. "A Cluster-Grid Projection Method: Solving Problems with High Dimensionality," NBER Working Papers 15965, National Bureau of Economic Research, Inc.
    11. Andreas Lanz & Gregor Reich & Ole Wilms, 2022. "Adaptive grids for the estimation of dynamic models," Quantitative Marketing and Economics (QME), Springer, vol. 20(2), pages 179-238, June.
    12. Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019. "Uncertainty quantification and global sensitivity analysis for economic models," Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
    13. Pichler, Paul, 2011. "Solving the multi-country Real Business Cycle model using a monomial rule Galerkin method," Journal of Economic Dynamics and Control, Elsevier, vol. 35(2), pages 240-251, February.
    14. Hiroyuki Kasahara & Katsumi Shimotsu, 2012. "Sequential Estimation of Structural Models With a Fixed Point Constraint," Econometrica, Econometric Society, vol. 80(5), pages 2303-2319, September.
    15. Harold Cole & Felix Kubler, 2012. "Recursive Contracts, Lotteries and Weakly Concave Pareto Sets," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(4), pages 479-500, October.
    16. Isaiah Hull & Or Sattath & Eleni Diamanti & Göran Wendin, 2024. "Quantum Technology for Economists," Contributions to Economics, Springer, number 978-3-031-50780-9, September.
    17. Kenneth L. Judd & Lilia Maliar & Serguei Maliar, 2014. "Lower Bounds on Approximation Errors: Testing the Hypothesis That a Numerical Solution Is Accurate?," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-06, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
    18. Grüne, Lars & Semmler, Willi & Stieler, Marleen, 2015. "Using nonlinear model predictive control for dynamic decision problems in economics," Journal of Economic Dynamics and Control, Elsevier, vol. 60(C), pages 112-133.
    19. Peter Schober & Julian Valentin & Dirk Pflüger, 2022. "Solving High-Dimensional Dynamic Portfolio Choice Models with Hierarchical B-Splines on Sparse Grids," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 185-224, January.
    20. Zeynep Akşin & Barış Ata & Seyed Morteza Emadi & Che-Lin Su, 2013. "Structural Estimation of Callers' Delay Sensitivity in Call Centers," Management Science, INFORMS, vol. 59(12), pages 2727-2746, December.

    More about this item

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:macdyn:v:21:y:2017:i:02:p:336-361_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/mdy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.