IDEAS home Printed from https://ideas.repec.org/a/tpr/jeurec/v8y2010i2-3p626-634.html
   My bibliography  Save this article

Stable and Efficient Computational Methods for Dynamic Programming

Author

Listed:
  • Yongyang Cai
  • Kenneth L. Judd

Abstract

Dynamic programming is the foundation of dynamic economic analysis and often requires numerical solution methods. Standard methods are either slow or unstable. These instabilities are avoided when one uses modern methods from numerical optimization and approximation. Furthermore, large dynamic programming problems can be solved by using modern parallel computing architectures. (JEL: K23, L26, L51) (c) 2010 by the European Economic Association.

Suggested Citation

  • Yongyang Cai & Kenneth L. Judd, 2010. "Stable and Efficient Computational Methods for Dynamic Programming," Journal of the European Economic Association, MIT Press, vol. 8(2-3), pages 626-634, 04-05.
  • Handle: RePEc:tpr:jeurec:v:8:y:2010:i:2-3:p:626-634
    as

    Download full text from publisher

    File URL: http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1542-4774/issues
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rao, Akhil & Burgess, Matthew & Kaffine, Daniel, 2020. "Orbital-use fees could more than quadruple the value of the space industry," MPRA Paper 112708, University Library of Munich, Germany.
    2. Cai, Yongyang & Judd, Kenneth L. & Lontzek, Thomas S. & Michelangeli, Valentina & Su, Che-Lin, 2017. "A Nonlinear Programming Method For Dynamic Programming," Macroeconomic Dynamics, Cambridge University Press, vol. 21(2), pages 336-361, March.
    3. Xiao Liu, 2023. "Dynamic Coupon Targeting Using Batch Deep Reinforcement Learning: An Application to Livestream Shopping," Marketing Science, INFORMS, vol. 42(4), pages 637-658, July.
    4. Harold Cole & Felix Kubler, 2012. "Recursive Contracts, Lotteries and Weakly Concave Pareto Sets," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 15(4), pages 479-500, October.
    5. Gaurav Khemka & Adam Butt, 2017. "Non-Parametric Integral Estimation Using Data Clustering in Stochastic dynamic Programming: An Introduction Using Lifetime Financial Modelling," Risks, MDPI, vol. 5(4), pages 1-17, October.
    6. Peter Schober & Julian Valentin & Dirk Pflüger, 2022. "Solving High-Dimensional Dynamic Portfolio Choice Models with Hierarchical B-Splines on Sparse Grids," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 185-224, January.
    7. Yongyang Cai & Kenneth L. Judd & Rong Xu, 2013. "Numerical Solution of Dynamic Portfolio Optimization with Transaction Costs," NBER Working Papers 18709, National Bureau of Economic Research, Inc.
    8. Yongyang Cai & Kenneth L. Judd & Thomas S. Lontzek, 2013. "The Social Cost of Stochastic and Irreversible Climate Change," NBER Working Papers 18704, National Bureau of Economic Research, Inc.
    9. Yongyang Cai & Thomas S. Lontzek, 2019. "The Social Cost of Carbon with Economic and Climate Risks," Journal of Political Economy, University of Chicago Press, vol. 127(6), pages 2684-2734.
    10. Yongyang Cai & Kenneth Judd, 2013. "Shape-preserving dynamic programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 407-421, June.
    11. Ben J. Heijdra & Fabian Kindermann & Laurie S. M. Reijnders, 2014. "Life in Shackles? The Quantitative Implications of Reforming the Educational Loan System," CESifo Working Paper Series 5013, CESifo.
    12. Cai, Yongyang & Judd, Kenneth L., 2012. "Dynamic programming with shape-preserving rational spline Hermite interpolation," Economics Letters, Elsevier, vol. 117(1), pages 161-164.
    13. Yongyang Cai & Kenneth Judd & Greg Thain & Stephen Wright, 2015. "Solving Dynamic Programming Problems on a Computational Grid," Computational Economics, Springer;Society for Computational Economics, vol. 45(2), pages 261-284, February.

    More about this item

    JEL classification:

    • K23 - Law and Economics - - Regulation and Business Law - - - Regulated Industries and Administrative Law
    • L26 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Entrepreneurship
    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tpr:jeurec:v:8:y:2010:i:2-3:p:626-634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kelly McDougall (email available below). General contact details of provider: https://direct.mit.edu/journals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.