IDEAS home Printed from https://ideas.repec.org/a/cup/jagaec/v42y2010i04p679-693_00.html
   My bibliography  Save this article

An Improved Method for Calibrating Purchase Intentions in Stated Preference Demand Models

Author

Listed:
  • Davies, Stephen
  • Loomis, John

Abstract

The Orbit demand model allows the magnitude of the calibration to stated purchase intentions to vary based on the magnitude of the stated quantities. Using an empirical example of stated trips, we find that the extent of calibration varies substantially with less correction needed at small stated trips (-25%) but larger corrections at higher quantities of stated visits (-48%). We extend the Orbit model to calculate consumer surplus per stated trip of $26. Combining the calibrations in stated trips and value per trip, the Orbit model provides estimates of annual benefits from 60% to 111% less than the count data model.

Suggested Citation

  • Davies, Stephen & Loomis, John, 2010. "An Improved Method for Calibrating Purchase Intentions in Stated Preference Demand Models," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 42(4), pages 679-693, November.
  • Handle: RePEc:cup:jagaec:v:42:y:2010:i:04:p:679-693_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1074070800003886/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Caudill, Steven B & Ford, Jon M & Gropper, Daniel M, 1995. "Frontier Estimation and Firm-Specific Inefficiency Measures in the Presence of Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 105-111, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Helga Fehr-Duda & Robin Schimmelpfennig, 2018. "Wider die Zahlengläubigkeit: Sind Befragungsergebnisse eine gute Grundlage für wirtschaftspolitische Entscheidungen?," ECON - Working Papers 297, Department of Economics - University of Zurich, revised Dec 2018.
    2. Ewa Zawojska & Pierre-Alexandre Mahieu & Romain Crastes & Jordan Louviere, 2016. "On a way to overcome strategic overbidding in open-ended stated preference surveys: A recoding approach," Working Papers 2016-34, Faculty of Economic Sciences, University of Warsaw.
    3. Crastes dit Sourd, Romain & Zawojska, Ewa & Mahieu, Pierre-Alexandre & Louviere, Jordan, 2018. "Mitigating strategic misrepresentation of values in open-ended stated preference surveys by using negative reinforcement," Journal of choice modelling, Elsevier, vol. 28(C), pages 153-166.
    4. Fifer, Simon & Rose, John M., 2016. "Can you ever be certain? Reducing hypothetical bias in stated choice experiments via respondent reported choice certaintyAuthor-Name: Beck, Matthew J," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 149-167.
    5. Loomis, John B., 2014. "2013 WAEA Keynote Address: Strategies for Overcoming Hypothetical Bias in Stated Preference Surveys," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 39(01), pages 1-13, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nathan D. DeLay & Nathanael M. Thompson & James R. Mintert, 2022. "Precision agriculture technology adoption and technical efficiency," Journal of Agricultural Economics, Wiley Blackwell, vol. 73(1), pages 195-219, February.
    2. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    3. Deng, Yaguo, 2016. "Efficiency evaluation of Spanish hotel chains," DES - Working Papers. Statistics and Econometrics. WS 23897, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Pablo Argüelles & Luis Orea, 2021. "Managing power supply interruptions: a bottom-up spatial (frontier) model with an application to a Spanish electricity network," Empirical Economics, Springer, vol. 60(6), pages 2867-2896, June.
    5. Sabrina Auci & Laura Castellucci & Manuela Coromaldi, 2021. "How does public spending affect technical efficiency? Some evidence from 15 European countries," Bulletin of Economic Research, Wiley Blackwell, vol. 73(1), pages 108-130, January.
    6. Christopher F. Parmeter & Hung-Jen Wang & Subal C. Kumbhakar, 2017. "Nonparametric estimation of the determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 47(3), pages 205-221, June.
    7. Diego A. Restrepo-Tobón & Subal C. Kumbhakar, 2013. "Profit efficiency of U.S. commercial banks: a decomposition," Documentos de Trabajo de Valor Público 10939, Universidad EAFIT.
    8. Fumitoshi Mizutani & Eri Nakamura, 2017. "How do governance factors affect inefficiency? Stochastic frontier analysis of public utility firms in Japan," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 44(3), pages 267-289, September.
    9. Walter, Matthias & Cullmann, Astrid & von Hirschhausen, Christian & Wand, Robert & Zschille, Michael, 2009. "Quo vadis efficiency analysis of water distribution? A comparative literature review," Utilities Policy, Elsevier, vol. 17(3-4), pages 225-232, September.
    10. Castiglione, Concetta & Infante, Davide & Zieba, Marta, 2023. "Public support for performing arts. Efficiency and productivity gains in eleven European countries," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    11. Mark Andor & Frederik Hesse, "undated". "The StoNED age: The Departure Into a New Era of Efficiency Analysis? An MC study Comparing StoNED and the "Oldies" (SFA and DEA)," Working Papers 201285, Institute of Spatial and Housing Economics, Munster Universitary.
    12. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2017. "Endogenous environmental variables in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 199(2), pages 131-140.
    13. Hung-Jen Wang, 2002. "Heteroscedasticity and Non-Monotonic Efficiency Effects of a Stochastic Frontier Model," Journal of Productivity Analysis, Springer, vol. 18(3), pages 241-253, November.
    14. Zoltan Bakucs & Imre Fertő & József Fogarasi & Laure Latruffe & Yann Desjeux & Eduard Matveev & Sonia Marongiu & Mark Dolman & Rafat Soboh, 2011. "EU farms’ technical efficiency and productivity change in 1990 – 2006 [Efficacité technique et changement de productivité des exploitations agricoles européennes 1990-2006]," Post-Print hal-02808334, HAL.
    15. Saowaros Yaisawarng & Preecha Asavadachanukorn & Suthathip Yaisawarng, 2014. "Efficiency and productivity in the Thai non-life insurance industry," Journal of Productivity Analysis, Springer, vol. 41(2), pages 291-306, April.
    16. Antonio Álvarez-Pinilla & Rafael Garduño-Rivera & Héctor M. Núñez, 2015. "Estimating the Technical Efficiency of Mexican States," Working Papers DTE 588, CIDE, División de Economía.
    17. McKillop, D. G. & Glass, J. C. & Ferguson, C., 2002. "Investigating the cost performance of UK credit unions using radial and non-radial efficiency measures," Journal of Banking & Finance, Elsevier, vol. 26(8), pages 1563-1591, August.
    18. Raimundo Soto & Rosalía Vásquez, 2011. "The Efficiency Cost of the Kafala in Dubai: A Stochastic Frontier Analysis," Documentos de Trabajo 399, Instituto de Economia. Pontificia Universidad Católica de Chile..
    19. Mark Andor & Frederik Hesse, 2014. "The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA)," Journal of Productivity Analysis, Springer, vol. 41(1), pages 85-109, February.
    20. Víctor Fernández-Blanco & Ana Rodríguez-Álvarez & Aleksandra Wiśniewska, 2019. "Measuring technical efficiency and marginal costs in the performing arts: the case of the municipal theatres of Warsaw," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 43(1), pages 97-119, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:jagaec:v:42:y:2010:i:04:p:679-693_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aae .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.