IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v36y2020i1p122-169_4.html
   My bibliography  Save this article

Sign-Based Unit Root Tests For Explosive Financial Bubbles In The Presence Of Deterministically Time-Varying Volatility

Author

Listed:
  • Harvey, David I.
  • Leybourne, Stephen J.
  • Zu, Yang

Abstract

This article considers the problem of testing for an explosive bubble in financial data in the presence of time-varying volatility. We propose a sign-based variant of the Phillips, Shi, and Yu (2015, International Economic Review 56, 1043–1077) test. Unlike the original test, the sign-based test does not require bootstrap-type methods to control size in the presence of time-varying volatility. Under a locally explosive alternative, the sign-based test delivers higher power than the original test for many time-varying volatility and bubble specifications. However, since the original test can still outperform the sign-based one for some specifications, we also propose a union of rejections procedure that combines the original and sign-based tests, employing a wild bootstrap to control size. This is shown to capture most of the power available from the better performing of the two tests. We also show how a sign-based statistic can be used to date the bubble start and end points. An empirical illustration using Bitcoin price data is provided.

Suggested Citation

  • Harvey, David I. & Leybourne, Stephen J. & Zu, Yang, 2020. "Sign-Based Unit Root Tests For Explosive Financial Bubbles In The Presence Of Deterministically Time-Varying Volatility," Econometric Theory, Cambridge University Press, vol. 36(1), pages 122-169, February.
  • Handle: RePEc:cup:etheor:v:36:y:2020:i:1:p:122-169_4
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466619000057/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Louis Bago & Koffi Akakpo & Imad Rherrad & Ernest Ouédraogo, 2021. "Volatility Spillover and International Contagion of Housing Bubbles," JRFM, MDPI, vol. 14(7), pages 1-14, June.
    2. Verena Monschang & Bernd Wilfling, 2021. "Sup-ADF-style bubble-detection methods under test," Empirical Economics, Springer, vol. 61(1), pages 145-172, July.
    3. H. Peter Boswijk & Jun Yu & Yang Zu, 2024. "Testing for an Explosive Bubble using High-Frequency Volatility," Working Papers 202402, University of Macau, Faculty of Business Administration.
    4. Feng, Hao, 2023. "Testing for explosive bubbles in the presence of non-Gaussian conditions," Economics Letters, Elsevier, vol. 233(C).
    5. Vicente Esteve & María A. Prats, 2022. "Testing explosive bubbles with time-varying volatility: The case of the Spanish public debt, 1850?2021," Working Papers 2205, Department of Applied Economics II, Universidad de Valencia.
    6. Aktham Maghyereh & Hussein Abdoh, 2022. "Can news-based economic sentiment predict bubbles in precious metal markets?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-29, December.
    7. Esteve, Vicente & Prats, María A., 2023. "Testing explosive bubbles with time-varying volatility: The case of Spanish public debt," Finance Research Letters, Elsevier, vol. 51(C).
    8. Eiji Kurozumi & Anton Skrobotov & Alexey Tsarev, 2020. "Time-Transformed Test for the Explosive Bubbles under Non-stationary Volatility," Papers 2012.13937, arXiv.org, revised Nov 2021.
    9. Eiji Kurozumi & Anton Skrobotov, 2023. "Improving the accuracy of bubble date estimators under time-varying volatility," Papers 2306.02977, arXiv.org.
    10. Nicole Branger & Mark Trede & Bernd Wilfling, 2024. "Extracting stock-market bubbles from dividend futures," CQE Working Papers 10724, Center for Quantitative Economics (CQE), University of Muenster.
    11. Sam Astill & David I Harvey & Stephen J Leybourne & A M Robert Taylor & Yang Zu, 2023. "CUSUM-Based Monitoring for Explosive Episodes in Financial Data in the Presence of Time-Varying Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 21(1), pages 187-227.
    12. Xuanling Yang & Dong Li & Ting Zhang, 2024. "A simple stochastic nonlinear AR model with application to bubble," Papers 2401.07038, arXiv.org.
    13. Shuping Shi & Peter C. B. Phillips, 2022. "Econometric Analysis of Asset Price Bubbles," Cowles Foundation Discussion Papers 2331, Cowles Foundation for Research in Economics, Yale University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:36:y:2020:i:1:p:122-169_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.