IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v27y2011i01p47-73_00.html
   My bibliography  Save this article

Moment-Based Inference With Stratified Data

Author

Listed:
  • Tripathi, Gautam

Abstract

Many data sets used by economists and other social scientists are collected by stratified sampling. The sampling scheme used to collect the data induces a probability distribution on the observed sample that differs from the target or underlying distribution for which inference is to be made. If this effect is not taken into account, subsequent statistical inference can be seriously biased. This paper shows how to do efficient semiparametric inference in moment restriction models when data from the target population are collected by three widely used sampling schemes: variable probability sampling, multinomial sampling, and standard stratified sampling.

Suggested Citation

  • Tripathi, Gautam, 2011. "Moment-Based Inference With Stratified Data," Econometric Theory, Cambridge University Press, vol. 27(1), pages 47-73, February.
  • Handle: RePEc:cup:etheor:v:27:y:2011:i:01:p:47-73_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466610000125/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wooldridge, Jeffrey M., 2001. "Asymptotic Properties Of Weighted M-Estimators For Standard Stratified Samples," Econometric Theory, Cambridge University Press, vol. 17(2), pages 451-470, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuichi Kitamura, 2007. "Nonparametric Likelihood: Efficiency And Robustness," The Japanese Economic Review, Japanese Economic Association, vol. 58(1), pages 26-46, March.
    2. Esmeralda A. Ramalho & Joaquim J. S. Ramalho, 2006. "Two‐Step Empirical Likelihood Estimation Under Stratified Sampling When Aggregate Information Is Available," Manchester School, University of Manchester, vol. 74(5), pages 577-592, September.
    3. Yuichi Kitamura, 2006. "Empirical Likelihood Methods in Econometrics: Theory and Practice," CIRJE F-Series CIRJE-F-430, CIRJE, Faculty of Economics, University of Tokyo.
    4. Esmeralda Ramalho & Joaquim Ramalho, 2006. "Bias-Corrected Moment-Based Estimators for Parametric Models Under Endogenous Stratified Sampling," Econometric Reviews, Taylor & Francis Journals, vol. 25(4), pages 475-496.
    5. Kyungchul Song, 2009. "Efficient Estimation of Average Treatment Effects under Treatment-Based Sampling," PIER Working Paper Archive 09-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    6. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
    7. Tripathi, Gautam, 2011. "Generalized method of moments (GMM) based inference with stratified samples when the aggregate shares are known," Journal of Econometrics, Elsevier, vol. 165(2), pages 258-265.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esmeralda Ramalho, 2004. "Covariate Measurement Error in Endogenous Stratified Samples," Economics Working Papers 2_2004, University of Évora, Department of Economics (Portugal).
    2. Ludger Wößmann, 2005. "Educational Production in East Asia: The Impact of Family Background and Schooling Policies on Student Performance," German Economic Review, Verein für Socialpolitik, vol. 6(3), pages 331-353, August.
    3. Thomas Fuchs & Ludger Wossmann, 2004. "Computers and student learning: bivariate and multivariate evidence on the availability and use of computers at home and at school," Brussels Economic Review, ULB -- Universite Libre de Bruxelles, vol. 47(3-4), pages 359-386.
    4. Gundlach, Erich & Wößmann, Ludger, 2004. "Family background, schooling resources, and institutional features: What determines student performance in East Asian countries?," Munich Reprints in Economics 20450, University of Munich, Department of Economics.
    5. Onur Başer & Joseph C. Gardiner & Cathy J. Bradley & Hüseyin Yüce & Charles Given, 2006. "Longitudinal analysis of censored medical cost data," Health Economics, John Wiley & Sons, Ltd., vol. 15(5), pages 513-525, May.
    6. Jeffrey M. Wooldridge, 2002. "Inverse probability weighted M-estimators for sample selection, attrition, and stratification," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 1(2), pages 117-139, August.
    7. Prokhorov, Artem & Schmidt, Peter, 2009. "GMM redundancy results for general missing data problems," Journal of Econometrics, Elsevier, vol. 151(1), pages 47-55, July.
    8. Wo[ss]mann, Ludger & West, Martin, 2006. "Class-size effects in school systems around the world: Evidence from between-grade variation in TIMSS," European Economic Review, Elsevier, vol. 50(3), pages 695-736, April.
    9. Guido W. Imbens, 2020. "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, American Economic Association, vol. 58(4), pages 1129-1179, December.
    10. Lopez, Jose Antonio & Malaga, Jaime E., 2009. "Forecast and Simulation Analysis of Mexican Meat Consumption at the Table Cut Level: Impacts on U.S. Exports," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 51986, Agricultural and Applied Economics Association.
    11. Joann Jasiak & Purevdorj Tuvaandorj, 2023. "Penalized Likelihood Inference with Survey Data," Papers 2304.07855, arXiv.org.
    12. Ludger Wossmann, 2010. "Families, schools and primary-school learning: evidence for Argentina and Colombia in an international perspective," Applied Economics, Taylor & Francis Journals, vol. 42(21), pages 2645-2665.
    13. Ludger Wößmann, 2003. "Central Exams as the "Currency" of School Systems: International Evidence on the Complementarity of School Autonomy and Central Exams," ifo DICE Report, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 1(4), pages 46-56, 02.
    14. Ishii, Jun & Jun, Sunyoung & Van Dender, Kurt, 2009. "Air travel choices in multi-airport markets," Journal of Urban Economics, Elsevier, vol. 65(2), pages 216-227, March.
    15. Ludger Woessmann, 2003. "Central Exams as the "Currency" of School Systems: International Evidence on the Complementarity of School Autonomy and Central Exams," ifo DICE Report, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 1(04), pages 46-56, February.
    16. Jeffrey M. Wooldridge, 2005. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54, January.
    17. Xavier D'Haultf{oe}uille & Purevdorj Tuvaandorj, 2022. "A Robust Permutation Test for Subvector Inference in Linear Regressions," Papers 2205.06713, arXiv.org, revised Sep 2023.
    18. Buchinsky, Moshe & Li, Fanghua & Liao, Zhipeng, 2022. "Estimation and inference of semiparametric models using data from several sources," Journal of Econometrics, Elsevier, vol. 226(1), pages 80-103.
    19. Wooldridge, Jeffrey M., 2007. "Inverse probability weighted estimation for general missing data problems," Journal of Econometrics, Elsevier, vol. 141(2), pages 1281-1301, December.
    20. Ammermuller, Andreas & Heijke, Hans & Wo[ss]mann, Ludger, 2005. "Schooling quality in Eastern Europe: Educational production during transition," Economics of Education Review, Elsevier, vol. 24(5), pages 579-599, October.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:27:y:2011:i:01:p:47-73_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.