IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1181.html
   My bibliography  Save this paper

Nonstationary Density Estimation and Kernel Autoregression

Author

Listed:

Abstract

An asymptotic theory is developed for the kernel density estimate of a random walk and the kernel regression estimator of a nonstationary first order autoregression. The kernel density estimator provides a consistent estimate of the local time spent by the random walk in the spatial vicinity of a point that is determined in part by the argument of the density and in part by initial conditions. The kernel regression estimator is shown to be consistent and to have a mixed normal limit theory. The limit distribution has a mixing variate that is given by the reciprocal of the local time of a standard Brownian motion. The permissible range for the bandwidth parameter h_{n} includes rates which may increase as well as decrease with the sample size n, in contrast to the case of a stationary autoregression. However, the convergence rate of the kernel regression estimator is at most n^{1/4}, and this is slower than that of a stationary kernel autoregression, in contrast to the parametric case. In spite of these differences in the limit theory and the rates of convergence between the stationary and nonstationary cases, it is shown that the usual formulae for confidence intervals for the regression function still apply when h_{n} -> 0.

Suggested Citation

  • Peter C.B. Phillips & Joon Y. Park, 1998. "Nonstationary Density Estimation and Kernel Autoregression," Cowles Foundation Discussion Papers 1181, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1181
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d11/d1181.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, George J. & Knight, John L., 1997. "A Nonparametric Approach to the Estimation of Diffusion Processes, With an Application to a Short-Term Interest Rate Model," Econometric Theory, Cambridge University Press, vol. 13(5), pages 615-645, October.
    2. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    3. Ait-Sahalia, Yacine, 1996. "Nonparametric Pricing of Interest Rate Derivative Securities," Econometrica, Econometric Society, vol. 64(3), pages 527-560, May.
    4. Phillips, Peter C B & Ploberger, Werner, 1996. "An Asymptotic Theory of Bayesian Inference for Time Series," Econometrica, Econometric Society, vol. 64(2), pages 381-412, March.
    5. Collomb, Gérard & Härdle, Wolfgang, 1986. "Strong uniform convergence rates in robust nonparametric time series analysis and prediction: Kernel regression estimation from dependent observations," Stochastic Processes and their Applications, Elsevier, vol. 23(1), pages 77-89, October.
    6. P. M. Robinson, 1983. "Nonparametric Estimators For Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(3), pages 185-207, May.
    7. Wolfgang Härdle & Philippe Vieu, 1992. "Kernel Regression Smoothing Of Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 13(3), pages 209-232, May.
    8. repec:cup:etheor:v:13:y:1997:i:5:p:615-45 is not listed on IDEAS
    9. Hardle, Wolfgang & Linton, Oliver, 1986. "Applied nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 38, pages 2295-2339, Elsevier.
    10. Hardle, W. & Vieu, P., 1990. "Kernel regression smoothing of time series," LIDAM Discussion Papers CORE 1990031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Yacine Ait-Sahalia, 1998. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-Form Approach," NBER Technical Working Papers 0222, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. GHYSELS, Eric & PATILEA, Valentin & RENAULT, Eric & TORRES, Olivier, 1997. "Nonparametric methods and option pricing," LIDAM Discussion Papers CORE 1997075, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "Nonparametric estimation of American options' exercise boundaries and call prices," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1829-1857, October.
    3. Bonsoo Koo & Oliver Linton, 2010. "Semiparametric Estimation of Locally Stationary Diffusion Models," STICERD - Econometrics Paper Series 551, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    4. Ghysels, E. & Ng, S., 1996. "A Semi-Parametric Factor Model for Interest Rates," Cahiers de recherche 9612, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    5. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "American options with stochastic dividends and volatility: A nonparametric investigation," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 53-92.
    6. Franke, Jürgen & Kreiss, Jens-Peter & Mammen, Enno, 1997. "Bootstrap of kernel smoothing in nonlinear time series," SFB 373 Discussion Papers 1997,20, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    7. Eric Ghysels & Christian Gouriéroux & Joann Jasiak, 1996. "Kernel Autocorrelogram for Time Deformed Processes," CIRANO Working Papers 96s-19, CIRANO.
    8. Matthew Pritsker, 1997. "Nonparametric density estimation and tests of continuous time interest rate models," Finance and Economics Discussion Series 1997-26, Board of Governors of the Federal Reserve System (U.S.).
    9. Wolfgang Hardle & Torsten Kleinow & Alexander Korostelev & Camille Logeay & Eckhard Platen, 2008. "Semiparametric diffusion estimation and application to a stock market index," Quantitative Finance, Taylor & Francis Journals, vol. 8(1), pages 81-92.
    10. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    11. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    12. Zhijie Xiao & Oliver Linton & Raymond J. Carroll & E. Mammen, 2002. "More Efficient Kernel Estimation in Nonparametric Regression with Autocorrelated Errors," Cowles Foundation Discussion Papers 1375, Cowles Foundation for Research in Economics, Yale University.
    13. Dabo-Niang, Sophie & Francq, Christian & Zakoïan, Jean-Michel, 2010. "Combining Nonparametric and Optimal Linear Time Series Predictions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1554-1565.
    14. Oliver Linton & Douglas Steigerwald, 2000. "Adaptive testing in arch models," Econometric Reviews, Taylor & Francis Journals, vol. 19(2), pages 145-174.
    15. Oliver Linton & E. Mammen & J. Nielsen, 1997. "The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions," Cowles Foundation Discussion Papers 1160, Cowles Foundation for Research in Economics, Yale University.
    16. Fornari, Fabio & Mele, Antonio, 2001. "Recovering the probability density function of asset prices using garch as diffusion approximations," Journal of Empirical Finance, Elsevier, vol. 8(1), pages 83-110, March.
    17. Peter C. B. Phillips, 2003. "Laws and Limits of Econometrics," Economic Journal, Royal Economic Society, vol. 113(486), pages 26-52, March.
    18. Lubrano, Michel, 2004. "Modélisation bayésienne non linéaire du taux d’intérêt de court terme américain : l’aide des outils non paramétriques," L'Actualité Economique, Société Canadienne de Science Economique, vol. 80(2), pages 465-499, Juin-Sept.
    19. A. de Palma & C. Fontan & O. Mekkaoui, 2000. "Trip Timing for Public Transportation : An Empirical Application," THEMA Working Papers 2000-19, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    20. Scheder, Regine & Dette, Holger, 2005. "Strictly monotone and smooth nonparametric regression for two or more variables," Technical Reports 2005,17, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.