IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v23y2007i01p71-88_07.html
   My bibliography  Save this article

Wiener–Kolmogorov Filtering, Frequency-Selective Filtering, And Polynomial Regression

Author

Listed:
  • Pollock, D.S.G.

Abstract

Adaptations of the classical Wiener–Kolmogorov filters are described that enable them to be applied to short nonstationary sequences. Alternative filtering methods that operate in the time domain and the frequency domain are described. The frequency-domain methods have the advantage of allowing components of the data to be separated along sharp dividing lines in the frequency domain, without incurring any leakage. The paper contains a novel treatment of the start-up problem that affects the filtering of trended data sequences.

Suggested Citation

  • Pollock, D.S.G., 2007. "Wiener–Kolmogorov Filtering, Frequency-Selective Filtering, And Polynomial Regression," Econometric Theory, Cambridge University Press, vol. 23(1), pages 71-88, February.
  • Handle: RePEc:cup:etheor:v:23:y:2007:i:01:p:71-88_07
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S026646660707003X/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephen Pollock, 2014. "Trends Cycles and Seasons: Econometric Methods of Signal Extraction," Discussion Papers in Economics 14/04, Division of Economics, School of Business, University of Leicester.
    2. D.S.G. Pollock, "undated". "Filters, Waves and Spectra," Discussion Papers in Economics 19/08, Division of Economics, School of Business, University of Leicester.
    3. André Nunes Maranhão, 2024. "Brazilian Business Cycle Analysis in a High-Dimensional and Time-Irregular Span Context," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 20(1), pages 1-58, August.
    4. D. S. G. Pollock, 2016. "Econometric Filters," Computational Economics, Springer;Society for Computational Economics, vol. 48(4), pages 669-691, December.
    5. Tucker McElroy & Thomas Trimbur, 2015. "Signal Extraction for Non-Stationary Multivariate Time Series with Illustrations for Trend Inflation," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 209-227, March.
    6. Ahmed Belhadjayed & Grégoire Loeper & Frédéric Abergel, 2016. "Forecasting Trends With Asset Prices," Post-Print hal-01512431, HAL.
    7. Macaro, Christian, 2010. "Bayesian non-parametric signal extraction for Gaussian time series," Journal of Econometrics, Elsevier, vol. 157(2), pages 381-395, August.
    8. D. Stephen G. Pollock, 2018. "Filters, Waves and Spectra," Econometrics, MDPI, vol. 6(3), pages 1-33, July.
    9. McElroy, Tucker S. & Wildi, Marc, 2020. "The Multivariate Linear Prediction Problem: Model-Based and Direct Filtering Solutions," Econometrics and Statistics, Elsevier, vol. 14(C), pages 112-130.
    10. D.S.G. Pollock, 2009. "IDEOLOG: A Program for Filtering Econometric Data -- A Synopsis of Alternative Methods," EHUCHAPS, in: Ignacio Díaz-Emparanza & Petr Mariel & María Victoria Esteban (ed.), Econometrics with gretl. Proceedings of the gretl Conference 2009, edition 1, chapter 2, pages 15-44, Universidad del País Vasco - Facultad de Ciencias Económicas y Empresariales.
    11. D.S.G. Pollock, 2018. "The Manual for IDEOLOG.PAS. A Program for Filtering Econometric Data," Discussion Papers in Economics 19/09, Division of Economics, School of Business, University of Leicester.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:23:y:2007:i:01:p:71-88_07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.