IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v22y2006i05p932-946_06.html
   My bibliography  Save this article

On The Bimodality Of The Exact Distribution Of The Tsls Estimator

Author

Listed:
  • Forchini, G.

Abstract

We investigate the possible bimodality of the density of the two-stage least squares (TSLS) estimator in a just-identified/overidentified linear structural equation. By studying the interaction between weakness of instruments, degree of endogeneity, and degree of overidentification we are able to identify conditions for its existence.I thank Grant Hillier, Patrick Marsh, Don Poskitt, the editor Peter Phillips, and two anonymous referees for useful and encouraging comments.

Suggested Citation

  • Forchini, G., 2006. "On The Bimodality Of The Exact Distribution Of The Tsls Estimator," Econometric Theory, Cambridge University Press, vol. 22(5), pages 932-946, October.
  • Handle: RePEc:cup:etheor:v:22:y:2006:i:05:p:932-946_06
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466606060427/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Forchini, Giovanni & Hillier, Grant, 2003. "Conditional Inference For Possibly Unidentified Structural Equations," Econometric Theory, Cambridge University Press, vol. 19(5), pages 707-743, October.
    2. Woglom, Geoffrey, 2001. "More Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 69(5), pages 1381-1389, September.
    3. Maddala, G S & Jeong, Jinook, 1992. "On the Exact Small Sample Distribution of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 60(1), pages 181-183, January.
    4. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    5. Phillips, P C B, 1980. "The Exact Distribution of Instrumental Variable Estimators in an Equation Containing n + 1 Endogenous Variables," Econometrica, Econometric Society, vol. 48(4), pages 861-878, May.
    6. Hillier, Grant, 2006. "Yet More On The Exact Properties Of Iv Estimators," Econometric Theory, Cambridge University Press, vol. 22(5), pages 913-931, October.
    7. Forchini, Giovanni & Hillier, Grant, 2003. "Conditional Inference For Possibly Unidentified Structural Equations," Econometric Theory, Cambridge University Press, vol. 19(05), pages 707-743, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcelo C. Medeiros & Eduardo Mendes & Les Oxley, 2014. "A Note on Nonlinear Cointegration, Misspecification, and Bimodality," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 713-731, October.
    2. Simon A. Broda & Raymond Kan, 2016. "On distributions of ratios," Biometrika, Biometrika Trust, vol. 103(1), pages 205-218.
    3. Jan F. Kiviet, 2013. "Identification and inference in a simultaneous equation under alternative information sets and sampling schemes," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 24-59, February.
    4. Poskitt, D.S. & Skeels, C.L., 2007. "Approximating the distribution of the two-stage least squares estimator when the concentration parameter is small," Journal of Econometrics, Elsevier, vol. 139(1), pages 217-236, July.
    5. Jan F. Kiviet & Jerzy Niemczyk, 2014. "On the Limiting and Empirical Distributions of IV Estimators When Some of the Instruments are Actually Endogenous," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 33, pages 425-490, Emerald Group Publishing Limited.
    6. Phillips, Peter C.B., 2006. "A Remark On Bimodality And Weak Instrumentation In Structural Equation Estimation," Econometric Theory, Cambridge University Press, vol. 22(5), pages 947-960, October.
    7. Forchini, Giovanni, 2007. "The exact distribution of the TSLS estimator for a non-Gaussian just-identified linear structural equation," Economics Letters, Elsevier, vol. 95(1), pages 117-123, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phillips, Peter C.B., 2006. "A Remark On Bimodality And Weak Instrumentation In Structural Equation Estimation," Econometric Theory, Cambridge University Press, vol. 22(5), pages 947-960, October.
    2. D.S. Poskitt & C.L. Skeels, 2002. "Assessing Instrumental Variable Relevance:An Alternative Measure and Some Exact Finite Sample Theory," Department of Economics - Working Papers Series 862, The University of Melbourne.
    3. Simon A. Broda & Raymond Kan, 2016. "On distributions of ratios," Biometrika, Biometrika Trust, vol. 103(1), pages 205-218.
    4. Forchini, Giovanni, 2007. "The exact distribution of the TSLS estimator for a non-Gaussian just-identified linear structural equation," Economics Letters, Elsevier, vol. 95(1), pages 117-123, April.
    5. Jan F. Kiviet & Jerzy Niemczyk, 2014. "On the Limiting and Empirical Distributions of IV Estimators When Some of the Instruments are Actually Endogenous," Advances in Econometrics, in: Essays in Honor of Peter C. B. Phillips, volume 33, pages 425-490, Emerald Group Publishing Limited.
    6. Halvor Mehlum, 2009. "On the Geometry of the Instrumental Variable Estimator," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 427-435, June.
    7. Chao, John & Swanson, Norman R., 2007. "Alternative approximations of the bias and MSE of the IV estimator under weak identification with an application to bias correction," Journal of Econometrics, Elsevier, vol. 137(2), pages 515-555, April.
    8. Jan F. Kiviet, 2013. "Identification and inference in a simultaneous equation under alternative information sets and sampling schemes," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 24-59, February.
    9. Christopher L. Skeels & Frank Windmeijer, 2018. "On the Stock–Yogo Tables," Econometrics, MDPI, vol. 6(4), pages 1-23, November.
    10. D. S. Poskitt & C. L. Skeels, 2004. "Approximating the Distribution of the Instrumental Variables Estimator when the Concentration Parameter is Small," Monash Econometrics and Business Statistics Working Papers 19/04, Monash University, Department of Econometrics and Business Statistics.
    11. Poskitt, D.S. & Skeels, C.L., 2007. "Approximating the distribution of the two-stage least squares estimator when the concentration parameter is small," Journal of Econometrics, Elsevier, vol. 139(1), pages 217-236, July.
    12. Mehlum, Halvor, 2004. "Exact Small Sample Properties of the Instrumental Variable Estimator. A View From a Different Angle," Memorandum 03/2004, Oslo University, Department of Economics.
    13. Frölich, Markus & Lechner, Michael, 2010. "Exploiting Regional Treatment Intensity for the Evaluation of Labor Market Policies," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1014-1029.
    14. Clémentine Florens & Eric Jondeau & Hervé Le Bihan, 2001. "Assessing GMM Estimates of the Federal Reserve Reaction Function," Econometrics 0111003, University Library of Munich, Germany.
    15. Bekker, Paul A. & Lawford, Steve, 2008. "Symmetry-based inference in an instrumental variable setting," Journal of Econometrics, Elsevier, vol. 142(1), pages 28-49, January.
    16. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    17. Kleibergen, Frank & Zivot, Eric, 2003. "Bayesian and classical approaches to instrumental variable regression," Journal of Econometrics, Elsevier, vol. 114(1), pages 29-72, May.
    18. Paul A. Bekker & Jan van der Ploeg, 2000. "Instrumental Variable Estimation Based on Grouped Data," Econometric Society World Congress 2000 Contributed Papers 1862, Econometric Society.
    19. Markus Frölich & Michael Lechner, 2004. "Regional treatment intensity as an instrument for the evaluation of labour market policies," University of St. Gallen Department of Economics working paper series 2004 2004-08, Department of Economics, University of St. Gallen.
    20. Grant Hillier & Giovanni Forchini, 2004. "Ill-posed Problems and Instruments' Weakness," Econometric Society 2004 Australasian Meetings 357, Econometric Society.

    More about this item

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:22:y:2006:i:05:p:932-946_06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.