IDEAS home Printed from https://ideas.repec.org/a/csb/stintr/v15y2014i3p369-388.html
   My bibliography  Save this article

Estimating population mean with missing data in unequal probability sampling

Author

Listed:
  • Kajal Dihidar

Abstract

Nonresponse problem is a serious obstacle to the validity of estimates in a survey. The estimates become biased due to the missing values in data. The problem is how to deal with missing values, once they have been deemed impossible to recover. One way of exploring a possible lack of representativity in missing data is to estimate the response probabilities which are usually done by logistic regression model. However, the drawback of the logit model is that this requires values of the explanatory variables of the model to be known for all nonrespondents. Bethlehem (2012) showed that the response probabilities can be estimated by some weighting adjustment technique without having the individual data of the nonrespondents. Here we consider the doubtful nature of nonresponse regarding possible existence of relationship with any of the covariates. Moreover, instead of simple random sampling, we consider general unequal probability sampling scheme for selecting respondents. This paper presents the modification of Bethlehem (2012) proposal for unequal probability sampling to obtain the unbiased estimators for population total/average of a variable of interest and variance estimator and compares them with the usual estimators through numerical simulations.

Suggested Citation

  • Kajal Dihidar, 2014. "Estimating population mean with missing data in unequal probability sampling," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(3), pages 369-388, June.
  • Handle: RePEc:csb:stintr:v:15:y:2014:i:3:p:369-388
    as

    Download full text from publisher

    File URL: http://index.stat.gov.pl/repec/files/csb/stintr/csb_stintr_v15_2015_i3_n3.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kott, Phillip S. & Chang, Ted, 2010. "Using Calibration Weighting to Adjust for Nonignorable Unit Nonresponse," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1265-1275.
    2. Ted Chang & Phillip S. Kott, 2008. "Using calibration weighting to adjust for nonresponse under a plausible model," Biometrika, Biometrika Trust, vol. 95(3), pages 555-571.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carl-Erik Särndal & Imbi Traat & Kaur Lumiste, 2018. "Interaction Between Data Collection And Estimation Phases In Surveys With Nonresponse," Statistics in Transition New Series, Polish Statistical Association, vol. 19(2), pages 183-200, June.
    2. Denis Devaud & Yves Tillé, 2019. "Deville and Särndal’s calibration: revisiting a 25-years-old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1033-1065, December.
    3. Kott Phillip S. & Liao Dan, 2018. "Calibration Weighting for Nonresponse with Proxy Frame Variables (So that Unit Nonresponse Can Be Not Missing at Random)," Journal of Official Statistics, Sciendo, vol. 34(1), pages 107-120, March.
    4. M. Giovanna Ranalli & Alina Matei & Andrea Neri, 2023. "Generalised calibration with latent variables for the treatment of unit nonresponse in sample surveys," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(1), pages 169-195, March.
    5. Särndal Carl-Erik & Traat Imbi & Lumiste Kaur, 2018. "Interaction Between Data Collection And Estimation Phases In Surveys With Nonresponse," Statistics in Transition New Series, Statistics Poland, vol. 19(2), pages 183-200, June.
    6. Hamori, Shigeyuki & Motegi, Kaiji & Zhang, Zheng, 2019. "Calibration estimation of semiparametric copula models with data missing at random," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 85-109.
    7. Pengfei Li & Jing Qin & Yukun Liu, 2023. "Instability of inverse probability weighting methods and a remedy for nonignorable missing data," Biometrics, The International Biometric Society, vol. 79(4), pages 3215-3226, December.
    8. Christopher L. Foote & Tyler Hounshell & William D. Nordhaus & Douglas Rivers & Pamela Torola, 2021. "Measuring the US Employment Situation Using Online Panels: The Yale Labor Survey," Current Policy Perspectives 93422, Federal Reserve Bank of Boston.
    9. Maciej Berȩsewicz & Dagmara Nikulin, 2021. "Estimation of the size of informal employment based on administrative records with non‐ignorable selection mechanism," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 667-690, June.
    10. Jiang, Depeng & Zhao, Puying & Tang, Niansheng, 2016. "A propensity score adjustment method for regression models with nonignorable missing covariates," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 98-119.
    11. Alexandra Filindra & Melanie Kolbe, 2022. "Latinx identification with whiteness: What drives it, and what effects does it have on political preferences?," Social Science Quarterly, Southwestern Social Science Association, vol. 103(6), pages 1424-1439, November.
    12. Yujing Shao & Lei Wang, 2022. "Generalized partial linear models with nonignorable dropouts," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(2), pages 223-252, February.
    13. Li, Mengyan & Ma, Yanyuan & Zhao, Jiwei, 2022. "Efficient estimation in a partially specified nonignorable propensity score model," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    14. Ao Huang & Kosuke Morikawa & Tim Friede & Satoshi Hattori, 2023. "Adjusting for publication bias in meta‐analysis via inverse probability weighting using clinical trial registries," Biometrics, The International Biometric Society, vol. 79(3), pages 2089-2102, September.
    15. Xiaojun Mao & Zhonglei Wang & Shu Yang, 2023. "Matrix completion under complex survey sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 463-492, June.
    16. Sahar Z. Zangeneh & Roderick J. Little, 2022. "Likelihood‐Based Inference for the Finite Population Mean with Post‐Stratification Information Under Non‐Ignorable Non‐Response," International Statistical Review, International Statistical Institute, vol. 90(S1), pages 17-36, December.
    17. Chipperfield James & Brown James & Bell Philip, 2017. "Estimating the Count Error in the Australian Census," Journal of Official Statistics, Sciendo, vol. 33(1), pages 43-59, March.
    18. Gonzalez Jeffrey M. & Eltinge John L., 2016. "Discussion," Journal of Official Statistics, Sciendo, vol. 32(2), pages 295-300, June.
    19. Giovanni D'Alessio & Andrea Neri, 2015. "Income and wealth sample estimates consistent with macro aggregates: some experiments," Questioni di Economia e Finanza (Occasional Papers) 272, Bank of Italy, Economic Research and International Relations Area.
    20. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:csb:stintr:v:15:y:2014:i:3:p:369-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Beata Witek (email available below). General contact details of provider: https://edirc.repec.org/data/gusgvpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.