IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v95y2008i3p555-571.html
   My bibliography  Save this article

Using calibration weighting to adjust for nonresponse under a plausible model

Author

Listed:
  • Ted Chang
  • Phillip S. Kott

Abstract

When we estimate the population total for a survey variable or variables, calibration forces the weighted estimates of certain covariates to match known or alternatively estimated population totals called benchmarks. Calibration can be used to correct for sample-survey nonresponse, or for coverage error resulting from frame undercoverage or unit duplication. The quasi-randomization theory supporting its use in nonresponse adjustment treats response as an additional phase of random sampling. The functional form of a quasi-random response model is assumed to be known, its parameter values estimated implicitly through the creation of calibration weights. Unfortunately, calibration depends upon known benchmark totals while the covariates in a plausible model for survey response may not be the benchmark covariates. Moreover, it may be prudent to keep the number of covariates in a response model small. We use calibration to adjust for nonresponse when the benchmark model and covariates may differ, provided the number of the former is at least as great as that of the latter. We discuss the estimation of a total for a vector of survey variables that do not include the benchmark covariates, but that may include some of the model covariates. We show how to measure both the additional asymptotic variance due to the nonresponse in a calibration-weighted estimator and the full asymptotic variance of the estimator itself. All variances are determined with respect to the randomization mechanism used to select the sample, the response model generating the subset of sample respondents, or both. Data from the U.S. National Agricultural Statistical Service's 2002 Census of Agriculture and simulations are used to illustrate alternative adjustments for nonresponse. The paper concludes with some remarks about adjustment for coverage error. Copyright 2008, Oxford University Press.

Suggested Citation

  • Ted Chang & Phillip S. Kott, 2008. "Using calibration weighting to adjust for nonresponse under a plausible model," Biometrika, Biometrika Trust, vol. 95(3), pages 555-571.
  • Handle: RePEc:oup:biomet:v:95:y:2008:i:3:p:555-571
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asn022
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:95:y:2008:i:3:p:555-571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.