IDEAS home Printed from https://ideas.repec.org/a/col/000443/016929.html
   My bibliography  Save this article

Inflación e incertidumbre inflacionaria: la postura del Banco de México, 1969-2017

Author

Listed:
  • Eduardo Rosas Rojas
  • Teresa López González

Abstract

Este artículo examina la relación entre inflación e incertidumbre inflacionaria para la economía de México durante el periodo que comprende enero de 1969 a febrero de 2017, utilizando modelos SARMA-GARCH y sus extensiones GJR-GARCH-M y E-GARCH-M. Entre los hallazgos es posible evidenciar un efecto causal negativo de la incertidumbre inflacionaria sobre la inflación (cumplimiento de la hipótesis de Holland), lo cual indica que el Banco de México exhibe un comportamiento estabilizador ante la inflación. También se corrobora el cumplimiento de la hipótesis de Friedman-Ball, que establece que altos niveles de inflación incrementan la incertidumbre inflacionaria.

Suggested Citation

  • Eduardo Rosas Rojas & Teresa López González, 2018. "Inflación e incertidumbre inflacionaria: la postura del Banco de México, 1969-2017," Revista Finanzas y Politica Economica, Universidad Católica de Colombia, vol. 10(2), pages 349-372, November.
  • Handle: RePEc:col:000443:016929
    as

    Download full text from publisher

    File URL: https://editorial.ucatolica.edu.co/ojsucatolica/revistas_ucatolica/index.php/RFYPE/article/view/1730/2194
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luca Benati & Paolo Surico, 2008. "Evolving U.S. Monetary Policy and The Decline of Inflation Predictability," Journal of the European Economic Association, MIT Press, vol. 6(2-3), pages 634-646, 04-05.
    2. Brooks,Chris, 2008. "RATS Handbook to Accompany Introductory Econometrics for Finance," Cambridge Books, Cambridge University Press, number 9780521721684.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
    5. Brooks,Chris, 2008. "RATS Handbook to Accompany Introductory Econometrics for Finance," Cambridge Books, Cambridge University Press, number 9780521896955.
    6. Ana María Aguilar Argaez & Gabriel Cuadra & Claudia Ramírez Bulos & Daniel Sámano Peñaloza, 2014. "Anclaje de las expectativas de inflación ante choques de oferta adversos," Monetaria, Centro de Estudios Monetarios Latinoamericanos, CEMLA, vol. 0(1), pages 55-89, enero-jun.
    7. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665, National Bureau of Economic Research, Inc.
    8. Bojanic, Antonio N., 2013. "Inflación e incertidumbre inflacionaria en Bolivia," El Trimestre Económico, Fondo de Cultura Económica, vol. 0(318), pages 401-426, abril-jun.
    9. Alesina, Alberto & Summers, Lawrence H, 1993. "Central Bank Independence and Macroeconomic Performance: Some Comparative Evidence," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 25(2), pages 151-162, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prelorentzos, Arsenios-Georgios N. & Konstantakis, Konstantinos N. & Michaelides, Panayotis G. & Xidonas, Panos & Goutte, Stephane & Thomakos, Dimitrios D., 2024. "Introducing the GVAR-GARCH model: Evidence from financial markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    2. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    3. Edward C. H. Tang, 2021. "Speculate a lot," Pacific Economic Review, Wiley Blackwell, vol. 26(1), pages 91-109, February.
    4. Oshinloye, Micheal & Onanuga, Olaronke & Onanuga, Abayomi, 2015. "Exchange Rate Behaviour in the West Africa Monetary Zone: A GARCH Approach," MPRA Paper 83324, University Library of Munich, Germany.
    5. Justice Matarutse, 2014. "Volatility characteristics of stocks underlying Exchange Traded Funds in South Africa," Journal of Economics and Behavioral Studies, AMH International, vol. 6(10), pages 829-839.
    6. Nicholas Apergis & Umit Bulut & Gulbahar Ucler & Serife Ozsahin, 2021. "The causal linkage between inflation and inflation uncertainty under structural breaks: Evidence from Turkey," Manchester School, University of Manchester, vol. 89(3), pages 259-275, June.
    7. Kushal Banik Chowdhury & Nityananda Sarkar, 2015. "The Effect of Inflation on Inflation Uncertainty in the G7 Countries: A Double Threshold GARCH Model," International Econometric Review (IER), Econometric Research Association, vol. 7(1), pages 34-50, April.
    8. Karunanayake, Indika, 2014. "Exchange Rate Influences On Stock Market Returns And Volatility Dynamics: Empirical Evidence From The Australian Stock Market," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 10(1-2), January.
    9. Ali CELÝK, 2021. "Volatility of BIST 100 Returns After 2020, Calendar Anomalies and COVID-19 Effect," Journal of BRSA Banking and Financial Markets, Banking Regulation and Supervision Agency, vol. 15(1), pages 61-81.
    10. James Mark Gbeda & James Atta Peprah, 2018. "Day of the week effect and stock market volatility in Ghana and Nairobi stock exchanges," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 42(4), pages 727-745, October.
    11. Eling, Martin & Jung, Kwangmin, 2020. "Risk aggregation in non-life insurance: Standard models vs. internal models," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 183-198.
    12. Neifar, Malika, 2020. "Stock Market Volatility Analysis: A Case Study of TUNindex," MPRA Paper 99140, University Library of Munich, Germany.
    13. İbrahim Korkmaz KAHRAMAN, Habib KÜÇÜKŞAHİN, Emin ÇAĞLAK, 2019. "The Volatility Structure of Cryptocurrencies: The Comparison of GARCH Models," Fiscaoeconomia, Tubitak Ulakbim JournalPark (Dergipark), issue 2.
    14. Ilu, Ahmad Ibraheem, 2019. "Oil price Volatility and Exchange rate Dynamics in Nigeria: A Markov Switching Approach," MPRA Paper 97643, University Library of Munich, Germany.
    15. Alin Marius ANDRIEŞ & Iulian IHNATOV & Nicu SPRINCEAN, 2017. "Do Seasonal Anomalies Still Exist In Central And Eastern European Countries? A Conditional Variance Approach," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 60-83, December.
    16. Wen, Xiaoqian & Bouri, Elie & Roubaud, David, 2018. "Does oil product pricing reform increase returns and uncertainty in the Chinese stock market?," The Quarterly Review of Economics and Finance, Elsevier, vol. 68(C), pages 23-30.
    17. Chang, Chia-Lin & Hsu, Hui-Kuang & McAleer, Michael, 2014. "The impact of China on stock returns and volatility in the Taiwan tourism industry," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 381-401.
    18. Loc Dong Truong & Anh Thi Kim Nguyen & Dut Van Vo, 2021. "Index Future Trading and Spot Market Volatility in Frontier Markets: Evidence from Ho Chi Minh Stock Exchange," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(3), pages 353-366, September.
    19. Charalampos Basdekis & Apostolos Christopoulos & Alexandros Gkolfinopoulos & Ioannis Katsampoxakis, 2022. "VaR as a risk management framework for the spot and futures tanker markets," Operational Research, Springer, vol. 22(4), pages 4287-4352, September.
    20. Dr. Dhanya Alex & Dr. Roshna Varghese, 2015. "Derivative Trading and Spot Market Volatility: Evidence from Indian Market," International Journal of Innovation and Economic Development, Inovatus Services Ltd., vol. 1(3), pages 23-34, August.

    More about this item

    Keywords

    Banco Central; efectos asimétricos; incertidumbre inflacionaria; inflación.;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000443:016929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Universidad Católica de Colombia (email available below). General contact details of provider: https://edirc.repec.org/data/feuccco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.