IDEAS home Printed from https://ideas.repec.org/a/col/000411/011080.html
   My bibliography  Save this article

Desagregación multivariada del PIB sectorial del departamento de Bolívar

Author

Listed:
  • Ivonne Caridad Perez Correa
  • Juan Miguel Martinez Buendia

Abstract

La disponibilidad de series como el Producto Interno Bruto (PIB) departamental en períodos intra-anuales es indispensable para el análisis de la actividad económica regional. Para el departamento de Bolívar, como para el resto de departamentos colombianos, solo existen estadísticas del PIB para períodos anuales. Las series que podrían determinar su comportamiento solo están disponibles de forma ininterrumpida en períodos semestrales. Se implementó la metodología de desagregación ex-post de series de tiempo multivariadas propuesta por Nieto (2007), para buscar, con las series disponibles, un conjunto de variables para la semestralización del PIB de los sectores de la industria, el turismo y la construcción en Bolívar para el período 2000-2010. Se encontró que las variables “capacidad instalada”, “índice de producción de vivienda nueva (IPVN)”, “índice de ocupación hotelera” y “arribo de turistas del exterior” son adecuadas en los procesos de desagregación de este indicador.

Suggested Citation

  • Ivonne Caridad Perez Correa & Juan Miguel Martinez Buendia, 2013. "Desagregación multivariada del PIB sectorial del departamento de Bolívar," Revista Economía y Región, Universidad Tecnológica de Bolívar, vol. 7(1), pages 139-167, June.
  • Handle: RePEc:col:000411:011080
    as

    Download full text from publisher

    File URL: https://revistas.utb.edu.co/index.php/economiayregion/article/view/44
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jorge Luis Hurtado Guarín & Luis Fernando Melo Velandia, 2010. "Una metodología multivariada de desagregación temporal," Borradores de Economia 586, Banco de la Republica de Colombia.
    2. Di Fonzo, Tommaso, 1990. "The Estimation of M Disaggregate Time Series When Contemporaneous and Temporal Aggregates Are Known," The Review of Economics and Statistics, MIT Press, vol. 72(1), pages 178-182, February.
    3. Fabio H. Nieto, 2007. "Ex post and ex ante prediction of unobserved multivariate time series: a structural-model based approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 53-76.
    4. Nieto, Fabio H. & Guerrero, Victor M., 1995. "Kalman filter for singular and conditional state-space models when the system state and the observational error are correlated," Statistics & Probability Letters, Elsevier, vol. 22(4), pages 303-310, March.
    5. Chow, Gregory C & Lin, An-loh, 1971. "Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series," The Review of Economics and Statistics, MIT Press, vol. 53(4), pages 372-375, November.
    6. Luis Fernando Melo & Martha Misas A., 1992. "Desagregación de series temporales: metodología y aplicación al caso del PIB en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 11(22), pages 151-170, December.
    7. Rossi, Nicola, 1982. "A Note on the Estimation of Disaggregate Time Series When the Aggregate Is Known," The Review of Economics and Statistics, MIT Press, vol. 64(4), pages 695-696, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimo Gerli & Giovanni Marini, 2006. "Spatial and Temporal Time Series Conversion: A Consistent Estimator of the Error Variance-Covariance Matrix," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2005(3), pages 373-405.
    2. Tommaso Proietti, 2011. "Multivariate temporal disaggregation with cross-sectional constraints," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(7), pages 1455-1466, June.
    3. Wolfgang Polasek & Richard Sellner, 2008. "Spatial Chow-Lin Methods: Bayesian And Ml Forecast Comparisons," Working Paper series 38_08, Rimini Centre for Economic Analysis.
    4. Kahouli, Sondès, 2011. "Re-examining uranium supply and demand: New insights," Energy Policy, Elsevier, vol. 39(1), pages 358-376, January.
    5. Valter Giacinto & Libero Monteforte & Andrea Filippone & Francesco Montaruli & Tiziano Ropele, 2021. "ITER: A Quarterly Indicator of Regional Economic Activity in Italy," Italian Economic Journal: A Continuation of Rivista Italiana degli Economisti and Giornale degli Economisti, Springer;Società Italiana degli Economisti (Italian Economic Association), vol. 7(1), pages 129-147, March.
    6. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
    7. Gallego López, Nuria & Llano Verduras, Carlos & Perez García, Julian, 2010. "Estimación de los flujos de transporte de mercancías interregionales trimestrales mediante técnicas de interpolación temporal/Estimating Quarterly Interregional Commodity Transport Flows by Means of T," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 699(38á.)-6, Diciembre.
    8. Enrique M. Quilis, 2018. "Temporal disaggregation of economic time series: The view from the trenches," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 447-470, November.
    9. Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2018. "Regional Output Growth in the United Kingdom: More Timely and Higher Frequency Estimates, 1970-2017," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-14, Economic Statistics Centre of Excellence (ESCoE).
    10. Cuevas Ángel & Quilis Enrique M. & Espasa Antoni, 2015. "Quarterly Regional GDP Flash Estimates by Means of Benchmarking and Chain Linking," Journal of Official Statistics, Sciendo, vol. 31(4), pages 627-647, December.
    11. Pavel Vidal Alejandro & Lya Paola Sierra Suárez & Johana Sanabria Dominguez & Jaime Andres Collazos Rodríguez, 2015. "Indicador mensual de actividad económica (IMAE) para el Valle del Cauca," Borradores de Economia 900, Banco de la Republica de Colombia.
    12. Bernardí Cabred & Jose Pavía, 1999. "EstimatingJ (>1) quarterly time series in fulfilling annual and quarterly constraints," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 5(3), pages 339-349, August.
    13. Luke Mosley & Idris A. Eckley & Alex Gibberd, 2022. "Sparse temporal disaggregation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2203-2233, October.
    14. Fabio H. Nieto, 2007. "Ex post and ex ante prediction of unobserved multivariate time series: a structural-model based approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 53-76.
    15. Kosei Fukuda, 2009. "Related-variables selection in temporal disaggregation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(4), pages 343-357.
    16. Luke Mosley & Idris Eckley & Alex Gibberd, 2021. "Sparse Temporal Disaggregation," Papers 2108.05783, arXiv.org, revised Oct 2022.
    17. José Casals & Miguel Jerez & Sonia Sotoca, 2009. "Modelling and forecasting time series sampled at different frequencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(4), pages 316-342.
    18. Bernardí Cabrer-Borrás & Jose Manuel Pavía-Miralles, 2007. "On estimating contemporaneous quarterly regional GDP," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(3), pages 155-170.
    19. Bahram Adrangi & Arjun Chatrath & Kambiz Raffiee, 2023. "S&P 500 volatility, volatility regimes, and economic uncertainty," Bulletin of Economic Research, Wiley Blackwell, vol. 75(4), pages 1362-1387, October.
    20. Baoline Chen, 2007. "An Empirical Comparison of Methods for Temporal Distribution and Interpolation at the National Accounts," BEA Papers 0077, Bureau of Economic Analysis.

    More about this item

    Keywords

    Colombia; departamento de Bolívar; desagregación; compatibilidad; series económicas; modelos VAR; PIB;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000411:011080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Economia y Region (email available below). General contact details of provider: https://edirc.repec.org/data/feutbco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.