IDEAS home Printed from https://ideas.repec.org/a/ces/ifosdt/v70y2017i16p25-29.html
   My bibliography  Save this article

Zur Messung der Unsicherheit mit Befragungsdaten

Author

Listed:
  • Klaus Abberger
  • Wolfgang Nierhaus

Abstract

Ökonomische Unsicherheit ist nicht direkt beobachtbar. Eine Operationalisierung ist, Unsicherheit als Dispersion der in den Unternehmensbefragungen des ifo Instituts geäußerten Zukunftseinschätzungen zu messen. Auf den Geschäftserwartungen der befragten Unternehmen aufbauende Dispersionsmaße für die Sektoren Industrie, Bauhauptgewerbe, Groß- und Einzelhandel sowie Dienstleistungen sind im ifo Schnelldienst 15/2017 vorgestellt worden. In dem Artikel werden Dispersionsmaße auf der Basis sämtlicher in den ifo Konjunkturumfragen enthaltenen sektorenspezifischen Erwartungsfragen konstruiert. Es wird gezeigt, dass die so berechneten Maße mit Dispersionsmaßen korrelieren, die sich allein auf die Geschäftserwartungen der Firmen stützen. Dieses Ergebnis deutet darauf hin, dass die Dispersion der Geschäftserwartungen als Grundlage für sektorale Dispersionsmaße sowie sektorenübergreifende Maße dienen kann. Derartige Maße werden seit August 2017 vom ifo Institut im Rahmen der monatlichen Ergebnisse der ifo Konjunkturumfragen für Deutschland veröffentlicht. Sie dienen als Konstrukte, um sowohl die Unsicherheit in ausgewählten Wirtschaftsbereichen – Verarbeitendes Gewerbe, Bauhauptgewerbe, Groß- und Einzelhandel sowie Dienstleistungen – als auch die Unsicherheit im gesamten privaten Sektor abzuschätzen. Dass die Dispersion der Geschäftserwartungen für die einzelnen Sektoren entweder mit gewissen Einzelfragen oder aber mit den Durchschnitten stark korreliert, kann als Motivation für zukünftige vertiefte Forschung über die sektorenspezifischen Eigenheiten der Unsicherheit dienen.

Suggested Citation

  • Klaus Abberger & Wolfgang Nierhaus, 2017. "Zur Messung der Unsicherheit mit Befragungsdaten," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 70(16), pages 25-29, August.
  • Handle: RePEc:ces:ifosdt:v:70:y:2017:i:16:p:25-29
    as

    Download full text from publisher

    File URL: https://www.ifo.de/DocDL/sd-2017-16-abberger-nierhaus-unsicherheit-2017-08-24.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlos Bowles & Roberta Friz & Veronique Genre & Geoff Kenny & Aidan Meyler & Tuomas Rautanen, 2007. "The ECB survey of professional forecasters (SPF) – A review after eight years’ experience," Occasional Paper Series 59, European Central Bank.
    2. Christian Grimme, 2017. "Messung der Unternehmensunsicherheit in Deutschland – das ifo Streuungsmaß," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 70(15), pages 19-25, August.
    3. R?diger Bachmann & Steffen Elstner & Eric R. Sims, 2013. "Uncertainty and Economic Activity: Evidence from Business Survey Data," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(2), pages 217-249, April.
    4. Zarnowitz, Victor & Lambros, Louis A, 1987. "Consensus and Uncertainty in Economic Prediction," Journal of Political Economy, University of Chicago Press, vol. 95(3), pages 591-621, June.
    5. Kenny, Geoff & Genre, Véronique & Bowles, Carlos & Friz, Roberta & Meyler, Aidan & Rautanen, Tuomas, 2007. "The ECB survey of professional forecasters (SPF) - A review after eight years' experience," Occasional Paper Series 59, European Central Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bozena Gajdzik, 2022. "How Steel Mills Transform into Smart Mills: Digital Changes and Development Determinants in the Polish Steel Industry," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 27-42.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pilar Poncela & Eva Senra, 2017. "Measuring uncertainty and assessing its predictive power in the euro area," Empirical Economics, Springer, vol. 53(1), pages 165-182, August.
    2. Joshua Abel & Robert Rich & Joseph Song & Joseph Tracy, 2016. "The Measurement and Behavior of Uncertainty: Evidence from the ECB Survey of Professional Forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 533-550, April.
    3. Lahiri, Kajal & Sheng, Xuguang, 2010. "Learning and heterogeneity in GDP and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 26(2), pages 265-292, April.
    4. Antonio Fernandois & Carlos A. Medel, 2020. "Geopolitical tensions, OPEC news, and the oil price: A granger causality analysis," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 35(2), pages 57-90, October.
    5. Lahiri, Kajal & Sheng, Xuguang, 2008. "Evolution of forecast disagreement in a Bayesian learning model," Journal of Econometrics, Elsevier, vol. 144(2), pages 325-340, June.
    6. Manzan, Sebastiano, 2021. "Are professional forecasters Bayesian?," Journal of Economic Dynamics and Control, Elsevier, vol. 123(C).
    7. Casey, Eddie, 2021. "Are professional forecasters overconfident?," International Journal of Forecasting, Elsevier, vol. 37(2), pages 716-732.
    8. Aleksejs Krecetovs & Pasquale Della Corte, 2016. "Macro uncertainty and currency premia," 2016 Meeting Papers 624, Society for Economic Dynamics.
    9. Himounet, Nicolas, 2022. "Searching the nature of uncertainty: Macroeconomic and financial risks VS geopolitical and pandemic risks," International Economics, Elsevier, vol. 170(C), pages 1-31.
    10. Mayerlen, Frank & Sola, Pierre & Be Duc, Louis, 2008. "The monetary presentation of the euro area balance of payments," Occasional Paper Series 96, European Central Bank.
    11. Robert Rich & Joseph Tracy, 2021. "A Closer Look at the Behavior of Uncertainty and Disagreement: Micro Evidence from the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(1), pages 233-253, February.
    12. Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015. "Optimal combination of survey forecasts," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.
    13. Smets, Frank & Warne, Anders & Wouters, Raf, 2013. "Professional forecasters and the real-time forecasting performance of an estimated new keynesian model for the euro area," Working Paper Series 1571, European Central Bank.
    14. Steffen R. Henzel & Malte Rengel, 2017. "Dimensions Of Macroeconomic Uncertainty: A Common Factor Analysis," Economic Inquiry, Western Economic Association International, vol. 55(2), pages 843-877, April.
    15. K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze & G. Rünstler, 2008. "Short-term forecasting of GDP using large monthly datasets – A pseudo real-time forecast evaluation exercise," Working Paper Research 133, National Bank of Belgium.
    16. González, Fernando & Coppens, François & Winkler, Gerhard, 2007. "The performance of credit rating systems in the assessment of collateral used in Eurosystem monetary policy operations," Occasional Paper Series 65, European Central Bank.
    17. Blattner, Tobias Sebastian & Catenaro, Marco & Ehrmann, Michael & Strauch, Rolf & Turunen, Jarkko, 2008. "The predictability of monetary policy," Occasional Paper Series 83, European Central Bank.
    18. Paloviita, Maritta & Virén, Matti, 2012. "Inflation and output growth uncertainty in individual survey expectations," Bank of Finland Research Discussion Papers 37/2012, Bank of Finland.
    19. Michael Ryan, 2020. "An Anchor in Stormy Seas: Does Reforming Economic Institutions Reduce Uncertainty? Evidence from New Zealand," Working Papers in Economics 20/11, University of Waikato.
    20. Christiane Baumeister & Lutz Kilian, 2016. "Lower Oil Prices and the U.S. Economy: Is This Time Different?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 47(2 (Fall)), pages 287-357.

    More about this item

    Keywords

    Dispersionsmaß; Statistische Verteilung; Maßzahl; Erhebungstechnik;
    All these keywords.

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ifosdt:v:70:y:2017:i:16:p:25-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/ifooode.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.