IDEAS home Printed from https://ideas.repec.org/a/cem/jaecon/v18y2015n1p121-148.html
   My bibliography  Save this article

Small sample properties of Bayesian estimators of labor income processes

Author

Listed:
  • Taisuke Nakata

    (Federal Reserve Board of Governors)

  • Christopher Tonetti

    (Stanford GSB)

Abstract

There exists an extensive literature estimating idiosyncratic labor income processes. While a wide variety of models are estimated, GMM estimators are almost always used. We examine the validity of using likelihood based estimation in this context by comparing the small sample properties of a Bayesian estimator to those of GMM. Our baseline studies estimators of a commonly used simple earnings process. We extend our analysis to more complex environments, allowing for real world phenomena such as time varying and heterogeneous parameters, missing data, unbalanced panels, and non-normal errors. The Bayesian estimators are demonstrated to have favorable bias and efficiency properties.

Suggested Citation

  • Taisuke Nakata & Christopher Tonetti, 2015. "Small sample properties of Bayesian estimators of labor income processes," Journal of Applied Economics, Universidad del CEMA, vol. 18, pages 121-148, May.
  • Handle: RePEc:cem:jaecon:v:18:y:2015:n:1:p:121-148
    as

    Download full text from publisher

    File URL: https://ucema.edu.ar/publicaciones/download/volume18/Nakata.pdf
    Download Restriction: no

    File URL: https://ucema.edu.ar/publicaciones/download/volume18/Nakata_appendix.pdf
    File Function: Online Appendix
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fatih Guvenen, 2009. "An Empirical Investigation of Labor Income Processes," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 12(1), pages 58-79, January.
    2. Lillard, Lee A & Willis, Robert J, 1978. "Dynamic Aspects of Earning Mobility," Econometrica, Econometric Society, vol. 46(5), pages 985-1012, September.
    3. Altonji, Joseph G & Segal, Lewis M, 1996. "Small-Sample Bias in GMM Estimation of Covariance Structures," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 353-366, July.
    4. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    5. Martin Browning & Mette Ejrnæs & Javier Alvarez, 2010. "Modelling Income Processes with Lots of Heterogeneity," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(4), pages 1353-1381.
    6. Lillard, Lee A & Weiss, Yoram, 1979. "Components of Variation in Panel Earnings Data: American Scientists, 1960-70," Econometrica, Econometric Society, vol. 47(2), pages 437-454, March.
    7. MaCurdy, Thomas E., 1982. "The use of time series processes to model the error structure of earnings in a longitudinal data analysis," Journal of Econometrics, Elsevier, vol. 18(1), pages 83-114, January.
    8. Norets, Andriy & Pelenis, Justinas, 2014. "Posterior Consistency In Conditional Density Estimation By Covariate Dependent Mixtures," Econometric Theory, Cambridge University Press, vol. 30(3), pages 606-646, June.
    9. Clark, Todd E, 1996. "Small-Sample Properties of Estimators of Nonlinear Models of Covariance Structure," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 367-373, July.
    10. Baker, Michael, 1997. "Growth-Rate Heterogeneity and the Covariance Structure of Life-Cycle Earnings," Journal of Labor Economics, University of Chicago Press, vol. 15(2), pages 338-375, April.
    11. Geweke, John & Keane, Michael, 2000. "An empirical analysis of earnings dynamics among men in the PSID: 1968-1989," Journal of Econometrics, Elsevier, vol. 96(2), pages 293-356, June.
    12. Jonathan Heathcote & Fabrizio Perri & Giovanni L. Violante, 2010. "Unequal We Stand: An Empirical Analysis of Economic Inequality in the United States: 1967-2006," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 13(1), pages 15-51, January.
    13. Richard Blundell & Luigi Pistaferri & Ian Preston, 2008. "Consumption Inequality and Partial Insurance," American Economic Review, American Economic Association, vol. 98(5), pages 1887-1921, December.
    14. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    15. Costas Meghir & Luigi Pistaferri, 2004. "Income Variance Dynamics and Heterogeneity," Econometrica, Econometric Society, vol. 72(1), pages 1-32, January.
    16. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    17. Eric French, 2004. "The Labor Supply Response to (Mismeasured but) Predictable Wage Changes," The Review of Economics and Statistics, MIT Press, vol. 86(2), pages 602-613, May.
    18. Kjetil Storesletten & Chris I. Telmer & Amir Yaron, 2004. "Cyclical Dynamics in Idiosyncratic Labor Market Risk," Journal of Political Economy, University of Chicago Press, vol. 112(3), pages 695-717, June.
    19. Abowd, John M & Card, David, 1989. "On the Covariance Structure of Earnings and Hours Changes," Econometrica, Econometric Society, vol. 57(2), pages 411-445, March.
    20. Norets, Andriy & Pelenis, Justinas, 2012. "Bayesian modeling of joint and conditional distributions," Journal of Econometrics, Elsevier, vol. 168(2), pages 332-346.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Carter Braxton & Kyle F. Herkenhoff & Jonathan Rothbaum & Lawrence Schmidt, 2021. "Changing Income Risk across the US Skill Distribution: Evidence from a Generalized Kalman Filter," Opportunity and Inclusive Growth Institute Working Papers 55, Federal Reserve Bank of Minneapolis.
    2. Arpita Chatterjee & James Morley & Aarti Singh, 2019. "Full Information Estimation of Household Income Risk and Consumption Insurance," Discussion Papers 2019-07, School of Economics, The University of New South Wales.
    3. Hyungsik Roger Moon & Frank Schorfheide & Boyuan Zhang, 2023. "Bayesian Estimation of Panel Models under Potentially Sparse Heterogeneity," Papers 2310.13785, arXiv.org, revised Feb 2024.
    4. Gal Hochman & David Zilberman, 2018. "Corn Ethanol and U.S. Biofuel Policy 10 Years Later: A Quantitative Assessment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(2), pages 570-584.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatih Karahan & Serdar Ozkan, 2013. "On the Persistence of Income Shocks over the Life Cycle: Evidence, Theory, and Implications," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 16(3), pages 452-476, July.
    2. Masakatsu Okubo, 2015. "Earnings Dynamics and Profile Heterogeneity: Estimates from Japanese Panel Data," The Japanese Economic Review, Japanese Economic Association, vol. 66(1), pages 112-146, March.
    3. Ivan Vidangos, 2009. "Household welfare, precautionary saving, and social insurance under multiple sources of risk," Finance and Economics Discussion Series 2009-14, Board of Governors of the Federal Reserve System (U.S.).
    4. Robert Moffitt & Peter Gottschalk, 2008. "Trends in the Transitory Variance of Male Earnings in the U.S., 1970-2004," Boston College Working Papers in Economics 697, Boston College Department of Economics.
    5. Dmytro Hryshko, 2012. "Labor income profiles are not heterogeneous: Evidence from income growth rates," Quantitative Economics, Econometric Society, vol. 3(2), pages 177-209, July.
    6. Joseph G. Altonji & Anthony A. Smith Jr. & Ivan Vidangos, 2013. "Modeling Earnings Dynamics," Econometrica, Econometric Society, vol. 81(4), pages 1395-1454, July.
    7. Owen Freestone, 2018. "The Drivers of Life‐Cycle Wage Inequality in Australia," The Economic Record, The Economic Society of Australia, vol. 94(307), pages 424-444, December.
    8. Magnac, Thierry & Pistolesi, Nicolas & Roux, Sébastien, 2013. "Post schooling human capital investments and the life cycle variance of earnings," IDEI Working Papers 765, Institut d'Économie Industrielle (IDEI), Toulouse.
    9. Jonathan Heathcote & Fabrizio Perri & Giovanni L. Violante, 2010. "Unequal We Stand: An Empirical Analysis of Economic Inequality in the United States: 1967-2006," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 13(1), pages 15-51, January.
    10. Fatih Guvenen & Fatih Karahan & Serdar Ozkan & Jae Song, 2021. "What Do Data on Millions of U.S. Workers Reveal About Lifecycle Earnings Dynamics?," Econometrica, Econometric Society, vol. 89(5), pages 2303-2339, September.
    11. Gustafsson, Johan & Holmberg, Johan, 2019. "Earning dynamics in Sweden: The recent evolution of permanent inequality and earnings volatility," Umeå Economic Studies 963, Umeå University, Department of Economics.
    12. Hayakawa, Kazuhiko, 2024. "Recent development of covariance structure analysis in economics," Econometrics and Statistics, Elsevier, vol. 29(C), pages 31-48.
    13. Gustafsson, Johan & Holmberg, Johan, 2022. "Permanent and transitory earnings dynamics and lifetime income inequality in Sweden," Umeå Economic Studies 1005, Umeå University, Department of Economics.
    14. Otto Kässi, 2014. "Earnings dynamics of men and women in Finland: permanent inequality versus earnings instability," Empirical Economics, Springer, vol. 46(2), pages 451-477, March.
    15. Moira Daly & Dmytro Hryshko & Iourii Manovskii, 2022. "Improving The Measurement Of Earnings Dynamics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(1), pages 95-124, February.
    16. Fatih Guvenen, 2007. "Learning Your Earning: Are Labor Income Shocks Really Very Persistent?," American Economic Review, American Economic Association, vol. 97(3), pages 687-712, June.
    17. Cappellari, Lorenzo & Jenkins, Stephen P., 2013. "Earnings and Labour Market Volatility in Britain," IZA Discussion Papers 7491, Institute of Labor Economics (IZA).
    18. Gustafsson, Johan & Holmberg, Johan, 2023. "Permanent and transitory earnings dynamics and lifetime income inequality in Sweden," Labour Economics, Elsevier, vol. 85(C).
    19. Costanza Naguib & Patrick Gagliardini, 2023. "A Semi-nonparametric Copula Model for Earnings Mobility," Diskussionsschriften dp2302, Universitaet Bern, Departement Volkswirtschaft.
    20. Joseph Altonji & Disa Hynsjo & Ivan Vidangos, 2023. "Individual Earnings and Family Income: Dynamics and Distribution," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 49, pages 225-250, July.

    More about this item

    Keywords

    labor income process; small sample properties; GMM; Bayesian estimation; error component models;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
    • D91 - Microeconomics - - Micro-Based Behavioral Economics - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making
    • E21 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Consumption; Saving; Wealth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cem:jaecon:v:18:y:2015:n:1:p:121-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Valeria Dowding (email available below). General contact details of provider: https://edirc.repec.org/data/cemaaar.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.