IDEAS home Printed from https://ideas.repec.org/a/caa/jnlvet/v68y2023i8id78-2023-vetmed.html
   My bibliography  Save this article

Selected neonicotinoids and associated risk for aquatic organisms

Author

Listed:
  • A Strouhova

    (Laboratory of Aquatic Toxicology and Ichtyopathology, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic)

  • J Velisek

    (Laboratory of Aquatic Toxicology and Ichtyopathology, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic)

  • A Stara

    (Laboratory of Aquatic Toxicology and Ichtyopathology, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic)

Abstract

Neonicotinoids are one of the newest groups of systemic pesticides, effective on a wide range of invertebrate pests. The success of neonicotinoids can be assessed according to the amount used, for example, in the Czech Republic, which now accounts for 1/3 of the insecticide market. The European Union (EU) has a relatively interesting attitude towards neonicotinoids. Three neonicotinoid substances (imidacloprid, clothianidin and thiamethoxam) were severely restricted in 2013. In 2019, imidacloprid and clothianidin were banned, while thiamethoxam and thiacloprid were banned in 2020. In 2022, another substance, sulfoxaflor, was banned. Therefore, only two neonicotinoid substances (acetamiprid and flupyradifurone) are approved for outdoor use in the EU. Neonicotinoids enter aquatic ecosystems in many ways. In European rivers, neonicotinoids usually occur in nanograms per litre. Due to the low toxicity of neonicotinoids to standard test species, they were not expected to significantly impact the aquatic ecosystem until later studies showed that aquatic invertebrates, especially insects, are much more sensitive to neonicotinoids. In addition to the lethal effects, many studies point to sublethal impacts - reduced reproductive capacity, initiation of downstream drift of organisms, reduced ability to eat, or a change in feeding strategies. Neonicotinoids can affect individuals, populations, and entire ecosystems.

Suggested Citation

  • A Strouhova & J Velisek & A Stara, 2023. "Selected neonicotinoids and associated risk for aquatic organisms," Veterinární medicína, Czech Academy of Agricultural Sciences, vol. 68(8), pages 313-336.
  • Handle: RePEc:caa:jnlvet:v:68:y:2023:i:8:id:78-2023-vetmed
    DOI: 10.17221/78/2023-VETMED
    as

    Download full text from publisher

    File URL: http://vetmed.agriculturejournals.cz/doi/10.17221/78/2023-VETMED.html
    Download Restriction: free of charge

    File URL: http://vetmed.agriculturejournals.cz/doi/10.17221/78/2023-VETMED.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/78/2023-VETMED?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francisco Sánchez-Bayo & Henk A. Tennekes, 2020. "Time-Cumulative Toxicity of Neonicotinoids: Experimental Evidence and Implications for Environmental Risk Assessments," IJERPH, MDPI, vol. 17(5), pages 1-20, March.
    2. Richard J. Gill & Oscar Ramos-Rodriguez & Nigel E. Raine, 2012. "Combined pesticide exposure severely affects individual- and colony-level traits in bees," Nature, Nature, vol. 491(7422), pages 105-108, November.
    3. Muyesaier Tudi & Huada Daniel Ruan & Li Wang & Jia Lyu & Ross Sadler & Des Connell & Cordia Chu & Dung Tri Phung, 2021. "Agriculture Development, Pesticide Application and Its Impact on the Environment," IJERPH, MDPI, vol. 18(3), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Chen & Jie Zhang & Hongtao Wang & Lingyun Li & Meizhen Yin & Jie Shen & Shuo Yan & Baoyou Liu, 2024. "Preparation of Nanoscale Indoxacarb by Using Star Polymer for Efficiency Pest Management," Agriculture, MDPI, vol. 14(7), pages 1-16, June.
    2. Zahoor Ahmad Shah & Mushtaq Ahmad Dar & Eajaz Ahmad Dar & Chukwujekwu A. Obianefo & Arif Hussain Bhat & Mohammed Tauseef Ali & Mohamed El-Sharnouby & Mustafa Shukry & Hosny Kesba & Samy Sayed, 2022. "Sustainable Fruit Growing: An Analysis of Differences in Apple Productivity in the Indian State of Jammu and Kashmir," Sustainability, MDPI, vol. 14(21), pages 1-24, November.
    3. PK Gupta, 2018. "An Assessment of Relative Risks to Human/Ecological Health Biotech Crops versus Other Human Activities," Current Investigations in Agriculture and Current Research, Lupine Publishers, LLC, vol. 1(2), pages 51-62, February.
    4. Tianheng Jiang & Maomao Wang & Wei Zhang & Cheng Zhu & Feijuan Wang, 2024. "A Comprehensive Analysis of Agricultural Non-Point Source Pollution in China: Current Status, Risk Assessment and Management Strategies," Sustainability, MDPI, vol. 16(6), pages 1-19, March.
    5. Armando Valdez-Ramirez & Antonio Flores-Macias & Rodolfo Figueroa-Brito & Maria E. de la Torre-Hernandez & Miguel A. Ramos-Lopez & Saul A. Beltran-Ontiveros & Delia M. Becerril-Camacho & Daniel Diaz, 2023. "A Systematic Review of the Bioactivity of Jatropha curcas L. (Euphorbiaceae) Extracts in the Control of Insect Pests," Sustainability, MDPI, vol. 15(15), pages 1-26, July.
    6. Murendeni Kwinda & Stefan John Siebert & Helga Van Coller & Tlou Samuel Masehela, 2024. "Identifying Plant Functional Traits of Weeds in Fields Planted with Glyphosate-Tolerant Maize for Preferable Weed Management Practices," Agriculture, MDPI, vol. 14(2), pages 1-20, January.
    7. Kleczkowski, Adam & Ellis, Ciaran & Hanley, Nick & Goulson, David, 2017. "Pesticides and bees: Ecological-economic modelling of bee populations on farmland," Ecological Modelling, Elsevier, vol. 360(C), pages 53-62.
    8. Ratana Sapbamrer & Jiraporn Chittrakul, 2022. "Determinants of Consumers’ Behavior in Reducing Pesticide Residues in Vegetables and Fruits, Northern Thailand," IJERPH, MDPI, vol. 19(20), pages 1-11, October.
    9. Giuseppe Gattuso & Luca Falzone & Chiara Costa & Federica Giambò & Michele Teodoro & Silvia Vivarelli & Massimo Libra & Concettina Fenga, 2022. "Chronic Pesticide Exposure in Farm Workers Is Associated with the Epigenetic Modulation of hsa-miR-199a-5p," IJERPH, MDPI, vol. 19(12), pages 1-10, June.
    10. Lauren C. Ponisio & Paul R. Ehrlich, 2016. "Diversification, Yield and a New Agricultural Revolution: Problems and Prospects," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    11. Anuchart Sawasdee & Tsung-Han Tsai & Wen-Chi Liao & Chang-Sheng Wang, 2024. "Identification of the CesA7 Gene Encodes Brittleness Mutation Derived from IR64 Variety and Breeding for Ruminant Feeding," Agriculture, MDPI, vol. 14(5), pages 1-12, April.
    12. Maria da Glória C. Silva & Anderson O. Medeiros & Attilio Converti & Fabiola Carolina G. Almeida & Leonie A. Sarubbo, 2024. "Biosurfactants: Promising Biomolecules for Agricultural Applications," Sustainability, MDPI, vol. 16(1), pages 1-32, January.
    13. Liu, Wenjing & Wang, Jingsheng & Li, Chao & Chen, Baoxiong & Sun, Yufang, 2019. "Using Bibliometric Analysis to Understand the Recent Progress in Agroecosystem Services Research," Ecological Economics, Elsevier, vol. 156(C), pages 293-305.
    14. Banks, H.T. & Banks, J.E. & Bommarco, Riccardo & Laubmeier, A.N. & Myers, N.J. & Rundlöf, Maj & Tillman, Kristen, 2017. "Modeling bumble bee population dynamics with delay differential equations," Ecological Modelling, Elsevier, vol. 351(C), pages 14-23.
    15. Wanglin Ma & Hongyun Zheng & Amaka Nnaji, 2023. "Cooperative membership and adoption of green pest control practices: Insights from rice farmers," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(3), pages 459-479, July.
    16. Patricia A. Henríquez-Piskulich & Constanza Schapheer & Nicolas J. Vereecken & Cristian Villagra, 2021. "Agroecological Strategies to Safeguard Insect Pollinators in Biodiversity Hotspots: Chile as a Case Study," Sustainability, MDPI, vol. 13(12), pages 1-31, June.
    17. Weizhe Chen & Jialiang Guo & Yiran Liu & Jackson Champer, 2024. "Population suppression by release of insects carrying a dominant sterile homing gene drive targeting doublesex in Drosophila," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Qi Zhou, 2022. "Spatial-Temporal Change Characteristic Analysis and Environmental Risk Evaluation of Pesticide Application in Anhui Province," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    19. Xiuju Feng & Yunchen Zheng & Woraphon Yamaka & Jianxu Liu, 2024. "How Does Agricultural Green Transformation Improve Residents’ Health? Empirical Evidence from China," Agriculture, MDPI, vol. 14(7), pages 1-15, July.
    20. Bahromiddin Husenov & Siham Asaad & Hafiz Muminjanov & Larisa Garkava-Gustavsson & Eva Johansson, 2021. "Sustainable Wheat Production and Food Security of Domestic Wheat in Tajikistan: Implications of Seed Health and Protein Quality," IJERPH, MDPI, vol. 18(11), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlvet:v:68:y:2023:i:8:id:78-2023-vetmed. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.