IDEAS home Printed from https://ideas.repec.org/a/caa/jnlvet/v65y2020i6id9-2020-vetmed.html
   My bibliography  Save this article

The impact of dietary tarragon (Artemisia dracunculus) on serum apelin, brain-derived neurotrophic factor, cardiac troponin concentrations and histopathology of liver tissue in laying hens housed at different stocking densities

Author

Listed:
  • B Bayraktar

    (Faculty of Health Sciences, Bayburt University, Bayburt, Turkey)

  • E Tekce

    (Faculty of Applied Sciences, Bayburt University, Bayburt, Turkey)

  • H Kaya

    (Gümüşhane University Şiran Vocational School, Department of Veterinary Medicine, Şiran/ Gümüşhane, Turkey)

  • M Karaalp

    (Gümüşhane University Kelkit Aydin Doğan Vocational School, Department of Veterinary Medicine, Kelkit/Gümüşhane, Turkey)

  • E Turunc

    (Department of Pathology Science, Atatürk University Erzurum, Turkey)

Abstract

Due to its association with several other stress factors (poultry house gases, inadequate ventilation, heat, cold and poor hygiene), the high stocking density is a major stress factor that adversely affects the health and performance of poultry and the quality of the poultry products. Therefore, this experimental study was aimed at analysing the impact of different doses of dietary tarragon (Artemisia dracunculus) on the serum apelin, plasma brain-derived neurotrophic factor (p-BDNF), and cardiac troponin I (cTnI) concentrations, and the correlation between these indicators in laying hens housed at different stocking densities. The aim of this study is to investigate the effects of adding tarragon in different ratios to laying hen rations in the 2nd ovulation period on the cTnI, apelin, and BDNF hormone concentrations and the liver histopathology. The experiment was carried out over a period of eight weeks, with 192 Lohman Brown commercial hybrids at 50 weeks of age. Eight groups (four replicates each), composed of laying hens of equal body weight, which were housed at stocking densities of 580 cm2/hen and 810 cm2/hen and received 0, 1, 5 and 10 mmol/kg of tarragon (Artemisia dracunculus) in the feed, were established. At the end of the trial, 96 of the housed egg-laying hens (3 birds in each subgroup, a total of 12 birds in each group) were randomly selected and blood samples were taken from the vena subcutanea ulnaris. The samples collected were analysed for the apelin, p-BDNF, and cTnI contents. The analysis results demonstrated that tarragon supplementation had no effect on the serum apelin, p-BDNF and cTnI concentrations (P > 0.05). The Sub-Groups ST1, ST1.2, and ST6 presented with severe hyperaemia of the sinusoidal, portal and acinar blood vessels, whilst the hyperaemia of these blood vessels was moderate in Sub-Group ST12. Apelin, BDNF, and cTnI can act as protective factors against negative consequences of stress (e.g., stocking density or heat stress).

Suggested Citation

  • B Bayraktar & E Tekce & H Kaya & M Karaalp & E Turunc, 2020. "The impact of dietary tarragon (Artemisia dracunculus) on serum apelin, brain-derived neurotrophic factor, cardiac troponin concentrations and histopathology of liver tissue in laying hens housed at d," Veterinární medicína, Czech Academy of Agricultural Sciences, vol. 65(6), pages 269-279.
  • Handle: RePEc:caa:jnlvet:v:65:y:2020:i:6:id:9-2020-vetmed
    DOI: 10.17221/9/2020-VETMED
    as

    Download full text from publisher

    File URL: http://vetmed.agriculturejournals.cz/doi/10.17221/9/2020-VETMED.html
    Download Restriction: free of charge

    File URL: http://vetmed.agriculturejournals.cz/doi/10.17221/9/2020-VETMED.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/9/2020-VETMED?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marian Stamp Dawkins & Christl A. Donnelly & Tracey A. Jones, 2004. "Chicken welfare is influenced more by housing conditions than by stocking density," Nature, Nature, vol. 427(6972), pages 342-344, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eliseo Bustamante & Fernando-Juan García-Diego & Salvador Calvet & Antonio G. Torres & Antonio Hospitaler, 2015. "Measurement and Numerical Simulation of Air Velocity in a Tunnel-Ventilated Broiler House," Sustainability, MDPI, vol. 7(2), pages 1-20, February.
    2. Hall, Clare & Sandilands, Victoria, 2006. "Public Attitudes to the Welfare of Broiler Chickens," Working Papers 45998, Scotland's Rural College (formerly Scottish Agricultural College), Land Economy & Environment Research Group.
    3. Gocsik, Éva & Brooshooft, Suzanne D. & de Jong, Ingrid C. & Saatkamp, Helmut W., 2016. "Cost-efficiency of animal welfare in broiler production systems: A pilot study using the Welfare Quality® assessment protocol," Agricultural Systems, Elsevier, vol. 146(C), pages 55-69.
    4. Patterson, Jacinta & Mugera, Amin & Burton, Michael, 2015. "Consumer Preferences for Welfare Friendly Production Methods: The Case of Chicken Production in Western Australia," 2015 Conference (59th), February 10-13, 2015, Rotorua, New Zealand 202567, Australian Agricultural and Resource Economics Society.
    5. Eliseo Bustamante & Fernando-Juan García-Diego & Salvador Calvet & Fernando Estellés & Pedro Beltrán & Antonio Hospitaler & Antonio G. Torres, 2013. "Exploring Ventilation Efficiency in Poultry Buildings: The Validation of Computational Fluid Dynamics (CFD) in a Cross-Mechanically Ventilated Broiler Farm," Energies, MDPI, vol. 6(5), pages 1-19, May.
    6. Ye Zhou & Chao Yan & Di Chen & Chengde Zhang & Xingbo Zhao, 2023. "Integration of Grape-Duck Production Pattern Boosts Duck Behavior, Meat Quality, Fecal Microbiota and Soil Microorganisms," Agriculture, MDPI, vol. 13(1), pages 1-17, January.
    7. Jones, Tracey & Feber, Ruth & Hemery, Gabriel & Cook, Paul & James, Katy & Lamberth, Curt & Dawkins, Marian, 2007. "Welfare and environmental benefits of integrating commercially viable free-range broiler chickens into newly planted woodland: A UK case study," Agricultural Systems, Elsevier, vol. 94(2), pages 177-188, May.
    8. McVittie, Alistair & Moran, Dominic & Nevison, Ian, 2006. "Public Preferences for Broiler Chicken Welfare: Evidence from Stated Preference Studies," Working Papers 45990, Scotland's Rural College (formerly Scottish Agricultural College), Land Economy & Environment Research Group.
    9. Katarzyna Olejnik & Ewa Popiela & Sebastian Opaliński, 2022. "Emerging Precision Management Methods in Poultry Sector," Agriculture, MDPI, vol. 12(5), pages 1-18, May.
    10. Grzegorz Nawalany, 2012. "The Role of Ground in the Energy Management inside a Broiler House," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 4(4), pages 171-171, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlvet:v:65:y:2020:i:6:id:9-2020-vetmed. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.