IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i5p2605-2623d25830.html
   My bibliography  Save this article

Exploring Ventilation Efficiency in Poultry Buildings: The Validation of Computational Fluid Dynamics (CFD) in a Cross-Mechanically Ventilated Broiler Farm

Author

Listed:
  • Eliseo Bustamante

    (Institute of Animal Science and Technology, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia, Spain
    Department of Construction Engineering and Civil Projects, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia, Spain)

  • Fernando-Juan García-Diego

    (Department of Applied Physics (U.D. Agriculture Engineering), Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia, Spain
    Center of Physical Technologies, Associated Unity ICMM-CSIC/UPV, Polytechnic University of Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain)

  • Salvador Calvet

    (Institute of Animal Science and Technology, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia, Spain)

  • Fernando Estellés

    (Institute of Animal Science and Technology, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia, Spain)

  • Pedro Beltrán

    (Department of Applied Physics (U.D. Agriculture Engineering), Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia, Spain)

  • Antonio Hospitaler

    (Department of Construction Engineering and Civil Projects, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia, Spain)

  • Antonio G. Torres

    (Institute of Animal Science and Technology, Polytechnic University of Valencia, Camino de Vera s/n, 46022 Valencia, Spain)

Abstract

Broiler production in modern poultry farms commonly uses mechanical ventilation systems. This mechanical ventilation requires an amount of electric energy and a high level of investment in technology. Nevertheless, broiler production is affected by periodic problems of mortality because of thermal stress, thus being crucial to explore the ventilation efficiency. In this article, we analyze a cross-mechanical ventilation system focusing on air velocity distribution. In this way, two methodologies were used to explore indoor environment in livestock buildings: Computational Fluid Dynamics (CFD) simulations and direct measurements for verification and validation (V&V) of CFD. In this study, a validation model using a Generalized Linear Model (GLM) was conducted to compare these methodologies. The results showed that both methodologies were similar in results: the average of air velocities values were 0.60 ± 0.56 m s −1 for CFD and 0.64 ± 0.54 m s −1 for direct measurements. In conclusion, the air velocity was not affected by the methodology (CFD or direct measurements), and the CFD simulations were therefore validated to analyze indoor environment of poultry farms and its operations. A better knowledge of the indoor environment may contribute to reduce the demand of electric energy, increasing benefits and improving the thermal comfort of broilers.

Suggested Citation

  • Eliseo Bustamante & Fernando-Juan García-Diego & Salvador Calvet & Fernando Estellés & Pedro Beltrán & Antonio Hospitaler & Antonio G. Torres, 2013. "Exploring Ventilation Efficiency in Poultry Buildings: The Validation of Computational Fluid Dynamics (CFD) in a Cross-Mechanically Ventilated Broiler Farm," Energies, MDPI, vol. 6(5), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:5:p:2605-2623:d:25830
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/5/2605/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/5/2605/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(1), pages 193-194, February.
    2. Marian Stamp Dawkins & Christl A. Donnelly & Tracey A. Jones, 2004. "Chicken welfare is influenced more by housing conditions than by stocking density," Nature, Nature, vol. 427(6972), pages 342-344, January.
    3. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(2), pages 541-545, April.
    4. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(4), pages 1007-1017, August.
    5. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1461-1465, December.
    6. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(5), pages 1273-1289, October.
    7. ,, 2002. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 18(3), pages 819-821, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eliseo Bustamante & Fernando-Juan García-Diego & Salvador Calvet & Antonio G. Torres & Antonio Hospitaler, 2015. "Measurement and Numerical Simulation of Air Velocity in a Tunnel-Ventilated Broiler House," Sustainability, MDPI, vol. 7(2), pages 1-20, February.
    2. Khawar Shahzad & Muhammad Sultan & Muhammad Bilal & Hadeed Ashraf & Muhammad Farooq & Takahiko Miyazaki & Uzair Sajjad & Imran Ali & Muhammad I. Hussain, 2021. "Experiments on Energy-Efficient Evaporative Cooling Systems for Poultry Farm Application in Multan (Pakistan)," Sustainability, MDPI, vol. 13(5), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eliseo Bustamante & Fernando-Juan García-Diego & Salvador Calvet & Antonio G. Torres & Antonio Hospitaler, 2015. "Measurement and Numerical Simulation of Air Velocity in a Tunnel-Ventilated Broiler House," Sustainability, MDPI, vol. 7(2), pages 1-20, February.
    2. Claudia García-García & Catalina B. García-García & Román Salmerón, 2021. "Confronting collinearity in environmental regression models: evidence from world data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 895-926, September.
    3. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    4. Libura, Marek, 2007. "On the adjustment problem for linear programs," European Journal of Operational Research, Elsevier, vol. 183(1), pages 125-134, November.
    5. Christophe Loussouarn & Carine Franc & Yann Videau & Julien Mousquès, 2021. "Can General Practitioners Be More Productive? The Impact of Teamwork and Cooperation with Nurses on GP Activities," Health Economics, John Wiley & Sons, Ltd., vol. 30(3), pages 680-698, March.
    6. Tschakert, Petra, 2016. "Shifting Discourses of Vilification and the Taming of Unruly Mining Landscapes in Ghana," World Development, Elsevier, vol. 86(C), pages 123-132.
    7. María-Consuelo Casabán & Rafael Company & Lucas Jódar, 2020. "Non-Gaussian Quadrature Integral Transform Solution of Parabolic Models with a Finite Degree of Randomness," Mathematics, MDPI, vol. 8(7), pages 1-16, July.
    8. Isabelle Boutron & Peter John & David J. Torgerson, 2010. "Reporting Methodological Items in Randomized Experiments in Political Science," The ANNALS of the American Academy of Political and Social Science, , vol. 628(1), pages 112-131, March.
    9. Ben Slimane, Faten & Padilla Angulo, Laura, 2019. "Strategic change and corporate governance: Evidence from the stock exchange industry," Journal of Business Research, Elsevier, vol. 103(C), pages 206-218.
    10. Bossert, Walter & Derks, Jean & Peters, Hans, 2005. "Efficiency in uncertain cooperative games," Mathematical Social Sciences, Elsevier, vol. 50(1), pages 12-23, July.
    11. Weijun Xie & Yanfeng Ouyang & Sze Chun Wong, 2016. "Reliable Location-Routing Design Under Probabilistic Facility Disruptions," Transportation Science, INFORMS, vol. 50(3), pages 1128-1138, August.
    12. Sin-Yu Ho & N.M. Odhiambo, 2018. "Analysing the macroeconomic drivers of stock market development in the Philippines," Cogent Economics & Finance, Taylor & Francis Journals, vol. 6(1), pages 1451265-145, January.
    13. Natalia Nikolaevna Natocheeva* & Yuri Alexandrovich Rovensky & Yuri Yuryevich Rusanov & Tatiana Viktorovna Belyanchikova & Anna Anatolevna Staurskaya, 2018. "Optimizing Variability of Approaches to Regulatory Financing of Higher Education Services," The Journal of Social Sciences Research, Academic Research Publishing Group, pages 221-227:3.
    14. Philip Arestis & Howard Stein, 2005. "An Institutional Perspective to Finance and Development as an Alternative to Financial Liberalisation," International Review of Applied Economics, Taylor & Francis Journals, vol. 19(4), pages 381-398.
    15. Sahar Validi & Arijit Bhattacharya & P. J. Byrne, 2020. "Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model," Annals of Operations Research, Springer, vol. 290(1), pages 191-222, July.
    16. Cabada, Alberto & Fernández-Gómez, Carlos, 2015. "Constant sign solutions of two-point fourth order problems," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 122-133.
    17. Andy Hall, 2005. "Capacity development for agricultural biotechnology in developing countries: an innovation systems view of what it is and how to develop it," Journal of International Development, John Wiley & Sons, Ltd., vol. 17(5), pages 611-630.
    18. Athinoula A. Kosti & Simon Colreavy-Donnelly & Fabio Caraffini & Zacharias A. Anastassi, 2020. "Efficient Computation of the Nonlinear Schrödinger Equation with Time-Dependent Coefficients," Mathematics, MDPI, vol. 8(3), pages 1-12, March.
    19. Bruno Frey, 2005. "Problems with Publishing: Existing State and Solutions," European Journal of Law and Economics, Springer, vol. 19(2), pages 173-190, April.
    20. Lan, Heng-you, 2021. "Approximation-solvability of population biology systems based on p-Laplacian elliptic inequalities with demicontinuous strongly pseudo-contractive operators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:5:p:2605-2623:d:25830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.