IDEAS home Printed from https://ideas.repec.org/a/caa/jnlrae/v69y2023i4id5-2023-rae.html
   My bibliography  Save this article

Operating performance of manual, semi-automatic, and automatic tractor guidance systems for precision farming

Author

Listed:
  • Paola D'Antonio

    (School of Agricultural, Forestry and Environmental Sciences, University of Basilicata, Italy)

  • Andi Mehmeti

    (School of Agricultural, Forestry and Environmental Sciences, University of Basilicata, Italy
    Mediterranean Agronomic Institute of Bari, Valenzano, Italy)

  • Francesco Toscano

    (School of Agricultural, Forestry and Environmental Sciences, University of Basilicata, Italy)

  • Costanza Fiorentino

    (School of Agricultural, Forestry and Environmental Sciences, University of Basilicata, Italy)

Abstract

Precision agriculture is increasingly relying on tractor auto-steer systems to boost productivity and optimize crop inputs. Identifying field variations and performance, on the other hand, is necessary for giving site-specific recommendations. This study reports the field operating performance indicators of manual (MG), semi-automatic (SG), and automatic (AG) tractor guidance for weed control in wheat production in Southern Italy. Performance indicators include effective worked area, overall working time, effective field capacity, field efficiency, fuel consumption, and product usage. The SG tractor guidance working times were similar to the MG, but with significant savings in the herbicide spray solution and work quality. In terms of all parameters examined, the AG outperformed the SG and MG. The AG was 54% faster than the MG, resulting in an increased area worked and effective field capacity of 5 and 46%, respectively. The total time (effective time plus non-productive time) was reduced by 28%, while overlapped areas by 88.9%. Herbicide and fuel input was reduced by 30 and 11.5%, respectively. A streamlined environmental analysis indicated that AG could reduce the energy and carbon intensity of the one-time weed control process by 25 and 27% for each hectare. Our results confirm that auto guidance provides numerous benefits (e.g., machining uniformity, increased work quality, reduced resource use, and reduced environmental burdens), supporting the larger goal of agricultural production sustainability.

Suggested Citation

  • Paola D'Antonio & Andi Mehmeti & Francesco Toscano & Costanza Fiorentino, 2023. "Operating performance of manual, semi-automatic, and automatic tractor guidance systems for precision farming," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 69(4), pages 179-188.
  • Handle: RePEc:caa:jnlrae:v:69:y:2023:i:4:id:5-2023-rae
    DOI: 10.17221/5/2023-RAE
    as

    Download full text from publisher

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/5/2023-RAE.html
    Download Restriction: free of charge

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/5/2023-RAE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/5/2023-RAE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ozgul Calicioglu & Alessandro Flammini & Stefania Bracco & Lorenzo Bellù & Ralph Sims, 2019. "The Future Challenges of Food and Agriculture: An Integrated Analysis of Trends and Solutions," Sustainability, MDPI, vol. 11(1), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Shemei & Ma, Jiliang & Zhang, Liu & Sun, Zhanli & Zhao, Zhijun & Khan, Nawab, 2022. "Does adoption of honeybee pollination promote the economic value of kiwifruit farmers? Evidence from China," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 19(14), pages 1-14.
    2. Leonidas Sotirios Kyrgiakos & Georgios Kleftodimos & George Vlontzos & Panos M. Pardalos, 2023. "A systematic literature review of data envelopment analysis implementation in agriculture under the prism of sustainability," Operational Research, Springer, vol. 23(1), pages 1-38, March.
    3. Mai Chiem Tuyen & Prapinwadee Sirisupluxana & Isriya Bunyasiri & Pham Xuan Hung, 2022. "Perceptions, Problems and Prospects of Contract Farming: Insights from Rice Production in Vietnam," Sustainability, MDPI, vol. 14(19), pages 1-22, September.
    4. Anca Sipos, 2020. "Sustainable Method Using Filtering Techniques for a Fermentation Process State Estimation," Sustainability, MDPI, vol. 12(17), pages 1-14, August.
    5. Ajwal Dsouza & Gordon W. Price & Mike Dixon & Thomas Graham, 2021. "A Conceptual Framework for Incorporation of Composting in Closed-Loop Urban Controlled Environment Agriculture," Sustainability, MDPI, vol. 13(5), pages 1-27, February.
    6. Mai Chiem Tuyen & Prapinwadee Sirisupluxana & Isriya Bunyasiri & Pham Xuan Hung, 2022. "Stakeholders’ Preferences towards Contract Attributes: Evidence from Rice Production in Vietnam," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    7. Kiefer, Katharina & Kremer, Jasper & Zeitner, Philipp & Winkler, Bastian & Wagner, Moritz & von Cossel, Moritz, 2023. "Monetizing ecosystem services of perennial wild plant mixtures for bioenergy," Ecosystem Services, Elsevier, vol. 61(C).
    8. Minjie Li & Jian Wang & Yihui Chen, 2019. "Evaluation and Influencing Factors of Sustainable Development Capability of Agriculture in Countries along the Belt and Road Route," Sustainability, MDPI, vol. 11(7), pages 1-28, April.
    9. Jim Woodhill & Avinash Kishore & Jemimah Njuki & Kristal Jones & Saher Hasnain, 2022. "Food systems and rural wellbeing: challenges and opportunities," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(5), pages 1099-1121, October.
    10. Zhang, Zhihui & Ghazali, Samane & Miceikienė, Astrida & Zejak, Dejan & Choobchian, Shahla & Pietrzykowski, Marcin & Azadi, Hossein, 2023. "Socio-economic impacts of agricultural land conversion: A meta-analysis," Land Use Policy, Elsevier, vol. 132(C).
    11. Gilgen, Anina & Blaser, Silvio & Schneuwly, Jérôme & Liebisch, Frank & Merbold, Lutz, 2023. "The Swiss agri-environmental data network (SAEDN): Description and critical review of the dataset," Agricultural Systems, Elsevier, vol. 205(C).
    12. Jiayue Zhang & Ken Seng Tan & Tony S. Wirjanto & Lysa Porth, 2024. "Joint Liability Model with Adaptation to Climate Change," Papers 2404.13818, arXiv.org.
    13. Kiloes, Adhitya Marendra & Puspitasari, & Sulistyaningrum, Anna & Khaririyatun, Nur & Mulyono, Djoko & Prabawati, Sulusi & Anwarudin Syah, Mohammad Jawal & Devy, Nirmala Friyanti & Hardiyanto,, 2024. "Unravelling the provisioning system of a strategic food commodity to minimise import dependency: A study of garlic in Indonesia," Food Policy, Elsevier, vol. 123(C).
    14. Giuseppe Timpanaro & Gaetano Chinnici & Roberta Selvaggi & Giulio Cascone & Vera Teresa Foti & Alessandro Scuderi, 2023. "Farmer?s adoption of agricultural insurance for Mediterranean crops as an innovative behavior," Economia agro-alimentare, FrancoAngeli Editore, vol. 25(2), pages 155-188.
    15. Rakeshkumar Mahto & Deepak Sharma & Reshma John & Chandrasekhar Putcha, 2021. "Agrivoltaics: A Climate-Smart Agriculture Approach for Indian Farmers," Land, MDPI, vol. 10(11), pages 1-28, November.
    16. Tippawong Rodjanatham & Tenzin Rabgyal, 2020. "Quality Assurance of International Fruit Supply Chains via Techno-Management," Agriculture, MDPI, vol. 10(4), pages 1-12, April.
    17. Jolanta Droždz & Vlada Vitunskienė & Lina Novickytė, 2021. "Profile of the Small-Scale Farms Willing to Cooperate—Evidence from Lithuania," Agriculture, MDPI, vol. 11(11), pages 1-21, October.
    18. Nawab Khan & Ram L. Ray & Hazem S. Kassem & Sajjad Hussain & Shemei Zhang & Muhammad Khayyam & Muhammad Ihtisham & Simplice A. Asongu, 2021. "Potential Role of Technology Innovation in Transformation of Sustainable Food Systems: A Review," Agriculture, MDPI, vol. 11(10), pages 1-20, October.
    19. Simonetta De Leo & Antonella Di Fonzo & Sabrina Giuca & Marco Gaito & Guido Bonati, 2023. "Economic Implications for Farmers in Adopting Climate Adaptation Measures in Italian Agriculture," Land, MDPI, vol. 12(4), pages 1-10, April.
    20. Muhammad Umer Arshad & Yuanfeng Zhao & Omer Hanif & Faiza Fatima, 2022. "Evolution of Overall Cotton Production and Its Determinants: Implications for Developing Countries Using Pakistan Case," Sustainability, MDPI, vol. 14(2), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlrae:v:69:y:2023:i:4:id:5-2023-rae. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.