IDEAS home Printed from https://ideas.repec.org/a/caa/jnlrae/v64y2018i3id16-2017-rae.html
   My bibliography  Save this article

Enhancement anaerobic digestion and methane production from kitchen waste by thermal and thermo-chemical pretreatments in batch leach bed reactor with down flow

Author

Listed:
  • Seyed Abbas Radmard

    (Department of Biosystem, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran)

  • Hossein Haji Agha Alizadeh

    (Department of Biosystem, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran)

  • Rahman Seifi

    (Department of Mechanical Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran)

Abstract

The effects of thermal (autoclave and microwave irradiation (MW)) and thermo-chemical (autoclave and microwave irradiation - assisted NaOH 5N) pretreatments on the chemical oxygen demand (COD) solubilisation, biogas and methane production of anaerobic digestion kitchen waste (KW) were investigated in this study. The modified Gompertz equation was fitted to accurately assess and compare the biogas and methane production from KW under the different pretreatment conditions and to attain representative simulations and predictions. In present study, COD solubilisation was demonstrated as an effective effect of pretreatment. Thermo-chemical pretreatments could improve biogas and methane production yields from KW. A comprehensive evaluation indicated that the thermo-chemical pretreatments (microwave irradiation and autoclave- assisted NaOH 5N, respectively) provided the best conditions to increase biogas and methane production from KW. The most effective enhancement of biogas and methane production (68.37 and 36.92 l, respectively) was observed from MW pretreated KW along with NaOH 5N, with the shortest lag phase of 1.79 day, the max. rate of 2.38 l.day-1 and ultimate biogas production of 69.8 l as the modified Gompertz equation predicted.

Suggested Citation

  • Seyed Abbas Radmard & Hossein Haji Agha Alizadeh & Rahman Seifi, 2018. "Enhancement anaerobic digestion and methane production from kitchen waste by thermal and thermo-chemical pretreatments in batch leach bed reactor with down flow," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 64(3), pages 128-135.
  • Handle: RePEc:caa:jnlrae:v:64:y:2018:i:3:id:16-2017-rae
    DOI: 10.17221/16/2017-RAE
    as

    Download full text from publisher

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/16/2017-RAE.html
    Download Restriction: free of charge

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/16/2017-RAE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/16/2017-RAE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ariunbaatar, Javkhlan & Panico, Antonio & Esposito, Giovanni & Pirozzi, Francesco & Lens, Piet N.L., 2014. "Pretreatment methods to enhance anaerobic digestion of organic solid waste," Applied Energy, Elsevier, vol. 123(C), pages 143-156.
    2. Rafique, Rashad & Poulsen, Tjalfe Gorm & Nizami, Abdul-Sattar & Asam, Zaki-ul-Zaman & Murphy, Jerry D. & Kiely, Gerard, 2010. "Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production," Energy, Elsevier, vol. 35(12), pages 4556-4561.
    3. Li, Yangyang & Jin, Yiying, 2015. "Effects of thermal pretreatment on acidification phase during two-phase batch anaerobic digestion of kitchen waste," Renewable Energy, Elsevier, vol. 77(C), pages 550-557.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hafid, Halimatun Saadiah & Rahman, Nor’ Aini Abdul & Shah, Umi Kalsom Md & Baharuddin, Azhari Samsu & Ariff, Arbakariya B., 2017. "Feasibility of using kitchen waste as future substrate for bioethanol production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 671-686.
    2. Yuan, Haiping & Zhu, Nanwen, 2016. "Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 429-438.
    3. Li, Wei & Guo, Jianbin & Cheng, Huicai & Wang, Wei & Dong, Renjie, 2017. "Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: Viability, performance and microbial community evaluation," Applied Energy, Elsevier, vol. 189(C), pages 613-622.
    4. Li, Yangyang & Jin, Yiying & Li, Jinhui & Li, Hailong & Yu, Zhixin, 2016. "Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste," Applied Energy, Elsevier, vol. 172(C), pages 47-58.
    5. Azman, Samet & Milh, Hannah & Somers, Matthijs H. & Zhang, Huili & Huybrechts, Ine & Meers, Erik & Meesschaert, Boudewijn & Dewil, Raf & Appels, Lise, 2020. "Ultrasound-assisted digestate treatment of manure digestate for increased biogas production in small pilot scale anaerobic digesters," Renewable Energy, Elsevier, vol. 152(C), pages 664-673.
    6. Jain, Siddharth & Jain, Shivani & Wolf, Ingo Tim & Lee, Jonathan & Tong, Yen Wah, 2015. "A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 142-154.
    7. Elsamadony, M. & Tawfik, A. & Suzuki, M., 2015. "Surfactant-enhanced biohydrogen production from organic fraction of municipal solid waste (OFMSW) via dry anaerobic digestion," Applied Energy, Elsevier, vol. 149(C), pages 272-282.
    8. Meneses-Quelal Orlando & Velázquez-Martí Borja, 2020. "Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review," Energies, MDPI, vol. 13(14), pages 1-28, July.
    9. Li, C. & Champagne, P. & Anderson, B.C., 2015. "Enhanced biogas production from anaerobic co-digestion of municipal wastewater treatment sludge and fat, oil and grease (FOG) by a modified two-stage thermophilic digester system with selected thermo-," Renewable Energy, Elsevier, vol. 83(C), pages 474-482.
    10. Zhen, Guangyin & Lu, Xueqin & Kato, Hiroyuki & Zhao, Youcai & Li, Yu-You, 2017. "Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 559-577.
    11. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2017. "Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential," Applied Energy, Elsevier, vol. 207(C), pages 166-175.
    12. Aisha Al-Rumaihi & Gordon McKay & Hamish R. Mackey & Tareq Al-Ansari, 2020. "Environmental Impact Assessment of Food Waste Management Using Two Composting Techniques," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
    13. Sarto, Sarto & Hildayati, Raudati & Syaichurrozi, Iqbal, 2019. "Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics," Renewable Energy, Elsevier, vol. 132(C), pages 335-350.
    14. Thompson, T.M. & Young, B.R. & Baroutian, S., 2020. "Pelagic Sargassum for energy and fertiliser production in the Caribbean: A case study on Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    15. Qi, Chuanren & Cao, Dingge & Gao, Xingzu & Jia, Sumeng & Yin, Rongrong & Nghiem, Long D. & Li, Guoxue & Luo, Wenhai, 2023. "Optimising organic composition of feedstock to improve microbial dynamics and symbiosis to advance solid-state anaerobic co-digestion of sewage sludge and organic waste," Applied Energy, Elsevier, vol. 351(C).
    16. Lin, Yunqin & Liang, Jiajin & Zeng, Chao & Wang, Dehan & Lin, Huanjia, 2017. "Anaerobic digestion of pulp and paper mill sludge pretreated by microbial consortium OEM1 with simultaneous degradation of lignocellulose and chlorophenols," Renewable Energy, Elsevier, vol. 108(C), pages 108-115.
    17. Notodarmojo, Peni Astrini & Fujiwara, Takeshi & Habuer, & Pham Van, Dinh, 2022. "Effectiveness of oyster shell as alkali additive for two-stage anaerobic co-digestion: Carbon flow analysis," Energy, Elsevier, vol. 239(PC).
    18. Elena Rossi & Isabella Pecorini & Giovanni Ferrara & Renato Iannelli, 2022. "Dry Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste: Biogas Production Optimization by Reducing Ammonia Inhibition," Energies, MDPI, vol. 15(15), pages 1-17, July.
    19. Agnieszka A. Pilarska & Tomasz Kulupa & Adrianna Kubiak & Agnieszka Wolna-Maruwka & Krzysztof Pilarski & Alicja Niewiadomska, 2023. "Anaerobic Digestion of Food Waste—A Short Review," Energies, MDPI, vol. 16(15), pages 1-23, August.
    20. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Kumar, Sumit & Quan, Wang & Duan, Yumin & Awasthi, Sanjeev Kumar & Chen, Hongyu & Pandey, Ashok & Zhang, Zengqiang , 2019. "A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 115-131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlrae:v:64:y:2018:i:3:id:16-2017-rae. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.