IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v67y2021i8id57-2021-pse.html
   My bibliography  Save this article

Lead immobilisation in mining contaminated soil using biochar and ash from sugarcane

Author

Listed:
  • Daojarus Ketrot
  • Worachart Wisawapipat

    (Department of Soil Science, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand)

Abstract

Immobilisation of lead (Pb) and toxic elements in contaminated soils is of importance due to their persistence in the environment. Herein, we investigated the effects of sugarcane filter cake biochar (SFCB) and sugarcane bagasse ash (SBA) on the extractability of Pb and some toxic and potentially toxic elements (As, Cd, Cu, and Zn) in polluted mine soil samples from Lower Klity Creek, Thailand. The soil was equilibrated with the SFCB and SBA at the respective rates of 0, 1, and 5% (w/w) for 120 days at field capacity. The results revealed that both SFCB and SBA materials significantly (P < 0.05) decreased Pb extractability in the studied soil, and it stabilised after 56 days of incubation. At 120 days, the SFCB and SBA application at the rates of 5% SFCB, 5% SBA, 1% SFCB, and 1% SBA decreased the extractable Pb contents by 50.35, 40.81, 29.42, and 19.27%, respectively, compared to unamended soil. The SFCB and SBA materials also improved soil chemical properties by increasing the soil pH, available phosphorus, and extractable sulfur. At 5%, SFCB decreased As extractability and increased organic carbon in the studied soil. The Zn availability in the studied soil was also improved by SFCB and SBA addition. This study highlights the potential use of biochar and ash from the sugarcane industry to stabilise Pb and As in contaminated soils.

Suggested Citation

  • Daojarus Ketrot & Worachart Wisawapipat, 2021. "Lead immobilisation in mining contaminated soil using biochar and ash from sugarcane," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(8), pages 474-481.
  • Handle: RePEc:caa:jnlpse:v:67:y:2021:i:8:id:57-2021-pse
    DOI: 10.17221/57/2021-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/57/2021-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/57/2021-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/57/2021-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. Břendová & P. Tlustoš & J. Száková, 2015. "Biochar immobilizes cadmium and zinc and improves phytoextraction potential of willow plants on extremely contaminated soil," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 61(7), pages 303-308.
    2. Paloma Campos & José María De la Rosa, 2020. "Assessing the Effects of Biochar on the Immobilization of Trace Elements and Plant Development in a Naturally Contaminated Soil," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veronika ZEMANOVÁ & Kateřina BŘENDOVÁ & Daniela PAVLÍKOVÁ & Pavla KUBÁTOVÁ & Pavel TLUSTOŠ, 2017. "Effect of biochar application on the content of nutrients (Ca, Fe, K, Mg, Na, P) and amino acids in subsequently growing spinach and mustard," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 63(7), pages 322-327.
    2. Senad Murtić & Ćerima Zahirović & Hamdija Čivić & Emina Sijahović & Josip Jurković & Jasna Avdić & Emir Šahinović & Adnana Podrug, 2021. "Phytoaccumulation of heavy metals in native plants growing on soils in the Spreča river valley, Bosnia and Herzegovina," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(9), pages 533-540.
    3. José M. De la Rosa & Arturo Santa-Olalla & Paloma Campos & Rafael López-Núñez & José A. González-Pérez & Gonzalo Almendros & Heike E. Knicker & Águeda Sánchez-Martín & Elena Fernández-Boy, 2022. "Impact of Biochar Amendment on Soil Properties and Organic Matter Composition in Trace Element-Contaminated Soil," IJERPH, MDPI, vol. 19(4), pages 1-16, February.
    4. P. Kraska & P. Oleszczuk & S. Andruszczak & E. Kwiecińska-Poppe & K. Różyło & E. Pałys & P. Gierasimiuk & Z. Michałojć, 2016. "Effect of various biochar rates on winter rye yield and the concentration of available nutrients in the soil," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(11), pages 483-489.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:67:y:2021:i:8:id:57-2021-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.