IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i15p6025-d390416.html
   My bibliography  Save this article

Assessing the Effects of Biochar on the Immobilization of Trace Elements and Plant Development in a Naturally Contaminated Soil

Author

Listed:
  • Paloma Campos

    (Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS-CSIC), Reina Mercedes Av. 10, 41012 Seville, Spain)

  • José María De la Rosa

    (Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas (IRNAS-CSIC), Reina Mercedes Av. 10, 41012 Seville, Spain)

Abstract

Soil contamination with trace elements is an important and global environmental concern. This study examined the potential of biochars derived from rice husk (RHB), olive pit (OPB), and a certified biochar produced from wood chips (CWB) to immobilize copper (Cu 2+ ) and lead (Pb 2+ ) in aqueous solution to avoid its leaching and in a pot experiment with acidic Xerofluvent soils multicontaminated with trace elements. After assessing the adsorption potential of Cu 2+ and Pb 2+ from an aqueous solution of the three studied biochars, the development of Brassica rapa pekinensis plants was monitored on polluted soils amended with the same biochars, to determine their capability to boost plant growth in a soil contaminated with several trace elements. RHB and CWB removed the maximum amounts of Cu 2+ and Pb 2+ from aqueous solution in the adsorption experiment. The adsorption capacity increased with initial metal concentrations for all biochars. The efficiency in the adsorption of cationic metals by biochars was clearly affected by biochar chemical properties, whereas total specific surface area seemed to not correlate with the adsorption capacity. Among the isotherm models, the Langmuir model was in the best agreement with the experimental data for both cations for CWB and RHB. The maximum adsorption capacity of Cu 2+ was 30.77 and 58.82 mg g −1 for RHB and CWB, respectively, and of Pb 2+ was 19.34 and 77.52 mg g −1 for RHB and CWB, respectively. The application of 5% of RHB and CWB to the acidic polluted soils improved soil physico-chemical properties, which permitted the development of Brassica rapa pekinensis plants. RHB and CWB have been shown to be effective for the removal of Cu 2+ and Pb 2+ , and the results obtained regarding plant development in the soils contaminated with trace elements indicated that the soil amendments have promising potential for the recovery of land polluted with heavy metals.

Suggested Citation

  • Paloma Campos & José María De la Rosa, 2020. "Assessing the Effects of Biochar on the Immobilization of Trace Elements and Plant Development in a Naturally Contaminated Soil," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6025-:d:390416
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/15/6025/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/15/6025/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sadaf Hashmi & Uzma Younis & Subhan Danish & Tariq Muhammad Munir, 2019. "Pongamia pinnata L. Leaves Biochar Increased Growth and Pigments Syntheses in Pisum sativum L. Exposed to Nutritional Stress," Agriculture, MDPI, vol. 9(7), pages 1-13, July.
    2. Linlin Si & Yinan Xie & Qingxu Ma & Lianghuan Wu, 2018. "The Short-Term Effects of Rice Straw Biochar, Nitrogen and Phosphorus Fertilizer on Rice Yield and Soil Properties in a Cold Waterlogged Paddy Field," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José M. De la Rosa & Arturo Santa-Olalla & Paloma Campos & Rafael López-Núñez & José A. González-Pérez & Gonzalo Almendros & Heike E. Knicker & Águeda Sánchez-Martín & Elena Fernández-Boy, 2022. "Impact of Biochar Amendment on Soil Properties and Organic Matter Composition in Trace Element-Contaminated Soil," IJERPH, MDPI, vol. 19(4), pages 1-16, February.
    2. Daojarus Ketrot & Worachart Wisawapipat, 2021. "Lead immobilisation in mining contaminated soil using biochar and ash from sugarcane," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 67(8), pages 474-481.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Chen & Qincheng Chen & Pinhua Rao & Lili Yan & Alghashm Shakib & Guoqing Shen, 2018. "Formulating and Optimizing a Novel Biochar-Based Fertilizer for Simultaneous Slow-Release of Nitrogen and Immobilization of Cadmium," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    2. Khadim Dawar & Zeeshan Khalil & Ishaq Ahmad Mian & Bushra Khan & Shamsher Ali & Ashfaq Ahmad Rahi & Muhammad Saeed Tahir & Niaz Ahmed & Shah Fahad & Subhan Danish & Asad Syed & Ali H. Bahkali & Rahul , 2022. "Effects of Farmyard Manure and Different Phosphorus Inorganic Fertilizer Application Rates on Wheat Cultivation in Phosphorus-Deficient Soil," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    3. Niaz Ahmed & Ali Raza Shah & Subhan Danish & Khadiga Alharbi & Rahul Datta, 2022. "Acidified Carbon with Variable Irrigation Sources Impact on Rice Growth and Yield under Cd Toxic Alkaline Soil Conditions," Sustainability, MDPI, vol. 14(16), pages 1-29, August.
    4. Sokkeang Be & Soydoa Vinitnantharat & Anawat Pinisakul, 2021. "Effect of Mangrove Biochar Residue Amended Shrimp Pond Sediment on Nitrogen Adsorption and Leaching," Sustainability, MDPI, vol. 13(13), pages 1-19, June.
    5. Peng Xu & Yuhong Gao & Zhengjun Cui & Bing Wu & Bin Yan & Yifan Wang & Keranmu Zaitongguli & Ming Wen & Haidi Wang & Na Jing & Yingze Wang & Changyan Chao & Wenfang Xue, 2023. "Research Progress on Effects of Biochar on Soil Environment and Crop Nutrient Absorption and Utilization," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    6. Zulqarnain Haider & Irshan Ahmad & Samta Zia & Yinbo Gan, 2023. "Recent Developments in Rice Molecular Breeding for Tolerance to Heavy Metal Toxicity," Agriculture, MDPI, vol. 13(5), pages 1-18, April.
    7. Mukhtar Ahmed & Shakeel Ahmad & Fayyaz-ul-Hassan & Ghulam Qadir & Rifat Hayat & Farid Asif Shaheen & Muhammad Ali Raza, 2019. "Innovative Processes and Technologies for Nutrient Recovery from Wastes: A Comprehensive Review," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    8. Jia Shen & Chaoqiang Jiang & Yifeng Yan & Chaolong Zu, 2019. "Selenium Distribution and Translocation in Rice ( Oryza sativa L.) under Different Naturally Seleniferous Soils," Sustainability, MDPI, vol. 11(2), pages 1-11, January.
    9. Urs Feller & Stanislav Kopriva & Valya Vassileva, 2018. "Plant Nutrient Dynamics in Stressful Environments: Needs Interfere with Burdens," Agriculture, MDPI, vol. 8(7), pages 1-6, July.
    10. Juan Yan & Xiaoju Chen & Tonggui Zhu & Zhongping Zhang & Jianbo Fan, 2021. "Effects of Selenium Fertilizer Application on Yield and Selenium Accumulation Characteristics of Different Japonica Rice Varieties," Sustainability, MDPI, vol. 13(18), pages 1-15, September.
    11. Haijun Sun & Huanchao Zhang & Weiming Shi & Mengyi Zhou & Xiaofang Ma, 2019. "Effect of biochar on nitrogen use efficiency, grain yield and amino acid content of wheat cultivated on saline soil," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(2), pages 83-89.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:15:p:6025-:d:390416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.