IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v65y2019i8id307-2019-pse.html
   My bibliography  Save this article

Comparison of soil phosphorus and phosphatase activity under long-term no-tillage and maize residue management

Author

Listed:
  • Xiaozhu Yang

    (Key Laboratory of Forest and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, P.R. China)

  • Xuelian Bao

    (Key Laboratory of Forest and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, P.R. China)

  • Yali Yang

    (Key Laboratory of Forest and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, P.R. China
    University of Chinese Academy of Sciences, Beijing, P.R. China)

  • Yue Zhao

    (Key Laboratory of Forest and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, P.R. China
    University of Chinese Academy of Sciences, Beijing, P.R. China)

  • Chao Liang

    (Key Laboratory of Forest and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, P.R. China)

  • Hongtu Xie

    (Key Laboratory of Forest and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, P.R. China)

Abstract

The migration and transformation of soil phosphorus (P) are essential for agricultural productivity and environmental security but have not been thoroughly elucidated to date. A 10-year field study was conducted to explore the effects of conventional tillage (CT) and no-tillage with maize residue management (NT-0, NT-33%, NT-67% and NT-100%) on P contents and phosphatase activities in soil layers (0-5, 5-10, 10-20 and 20-40 cm). The results showed that soil available P content and phosphatase activities were higher in no-tillage with maize residue than CT. Soil moisture and pH were significantly positively correlated with soil available P. Higher organic P contents and lower inorganic P contents in the 0-5 cm soil layer were found in the treatment NT-67% compared with other treatments. According to the structure equation model, the source of available P was inorganic P in NT-33%, while organic P in NT-67%. This study demonstrated that the variation of dominant mechanisms involved in soil P migration and transformation were dependent on residue input amounts, and NT-67% might play an important role in the maintenance and transformation of soil organic P.

Suggested Citation

  • Xiaozhu Yang & Xuelian Bao & Yali Yang & Yue Zhao & Chao Liang & Hongtu Xie, 2019. "Comparison of soil phosphorus and phosphatase activity under long-term no-tillage and maize residue management," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(8), pages 408-415.
  • Handle: RePEc:caa:jnlpse:v:65:y:2019:i:8:id:307-2019-pse
    DOI: 10.17221/307/2019-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/307/2019-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/307/2019-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/307/2019-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J.B. Wang & Z.H. Chen & L.J. Chen & A.N. Zhu & Z.J. Wu, 2011. "Surface soil phosphorus and phosphatase activities affected by tillage and crop residue input amounts," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 57(6), pages 251-257.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Wang & X. Liang & G. Liu & H. Li & X. Liu & F. Fan & W. Xia & P. Wang & Y. Ye & L. Li & Z. Liu & J. Zhu, 2013. "Phosphorus loss potential and phosphatase activities in paddy soils," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 59(11), pages 530-536.
    2. M. Płatkowski & A. Telesiński, 2016. "Response of soil phosphatases to glyphosate and its formulations - Roundup (laboratory conditions)," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(6), pages 286-292.
    3. Y.-C. Lv & G. Xu & J.-N. Sun & M. Brestič & M. Živčák & H.-B. Shao, 2015. "Phosphorus release from the soils in the Yellow River Delta: dynamic factors and implications for eco-restoration," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 61(8), pages 339-343.
    4. Junli HU & Xiangchao CUI & Jue DAI & Junhua WANG & Ruirui CHEN & Rui Yin & Xiangui LIN, 2014. "Interactive effects of arbuscular mycorrhizae and maize (Zea mays L.) straws on wheat (Triticum aestivum L.) growth and organic carbon storage in a sandy loam soil," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 9(3), pages 119-126.
    5. J.J. Wang & X.Y. Li & A.N. Zhu & X.K. Zhang & H.W. Zhang & W.J. Liang, 2012. "Effects of tillage and residue management on soil microbial communities in North China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(1), pages 28-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:65:y:2019:i:8:id:307-2019-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.