IDEAS home Printed from https://ideas.repec.org/a/caa/jnlpse/v56y2010i7id220-2009-pse.html
   My bibliography  Save this article

Physiological regulation of high transpiration efficiency in winter wheat under drought conditions

Author

Listed:
  • S. Changhai

    (Key Laboratory of Agricultural Water Resources & Hebei Key Laboratory of Agricultural Water-Saving, Centre for Agricultural Resources Research, Institute of Genetic and Developmental Biology, CAS, Shijiazhuang, P.R. China
    Graduate School, CAS, Beijing, P.R. China)

  • D. Baodi

    (Key Laboratory of Agricultural Water Resources & Hebei Key Laboratory of Agricultural Water-Saving, Centre for Agricultural Resources Research, Institute of Genetic and Developmental Biology, CAS, Shijiazhuang, P.R. China)

  • Q. Yunzhou

    (Key Laboratory of Agricultural Water Resources & Hebei Key Laboratory of Agricultural Water-Saving, Centre for Agricultural Resources Research, Institute of Genetic and Developmental Biology, CAS, Shijiazhuang, P.R. China)

  • L. Yuxin

    (Key Laboratory of Agricultural Water Resources & Hebei Key Laboratory of Agricultural Water-Saving, Centre for Agricultural Resources Research, Institute of Genetic and Developmental Biology, CAS, Shijiazhuang, P.R. China
    Graduate School, CAS, Beijing, P.R. China)

  • S. Lei

    (Shandong Agricultural University, Shandong, P.R. China)

  • L. Mengyu

    (Key Laboratory of Agricultural Water Resources & Hebei Key Laboratory of Agricultural Water-Saving, Centre for Agricultural Resources Research, Institute of Genetic and Developmental Biology, CAS, Shijiazhuang, P.R. China)

  • L. Haipei

    (Huazhong Agricultural University, Huazhong, P.R. China)

Abstract

Pot experiments were conducted to study the variation and physiological regulation of transpiration efficiency (TE) of four winter wheat (Triticum aestivum L.) varieties that are widely grown in different ecological regions in North China. Plants were grown under two soil moisture regimes, normal and drought stress. The results showed that under drought stress condition, both TE at plant level and TE at leaf level (TEl) increased significantly. The transpiration rate (Tr) was reduced more strongly than leaf net CO2 assimilation rate (Pn). The decline of Tr was mainly affected by stomatal conductance and the decline of Pn was affected by non-stomatal factors, which was confirmed by the decline in net photosynthetic oxygen evolution rate. The leaf soluble sugar content and proline content were significantly increased under drought stress. The stomatal density was increased and the stomatal length was reduced. These results led us to make the following conclusions: (1) Under drought stress, the increase in TEl appears to be regulated in two ways: via the stomata by regulating Tr, and independent of the stomata through regulation of Pn; regulation via the stomata was more sensitive; (2) Osmotic adjustment was closely correlated to the non-stomatal regulation, and stomatal aperture was closely correlated to the stomatal way.

Suggested Citation

  • S. Changhai & D. Baodi & Q. Yunzhou & L. Yuxin & S. Lei & L. Mengyu & L. Haipei, 2010. "Physiological regulation of high transpiration efficiency in winter wheat under drought conditions," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 56(7), pages 340-347.
  • Handle: RePEc:caa:jnlpse:v:56:y:2010:i:7:id:220-2009-pse
    DOI: 10.17221/220/2009-PSE
    as

    Download full text from publisher

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/220/2009-PSE.html
    Download Restriction: free of charge

    File URL: http://pse.agriculturejournals.cz/doi/10.17221/220/2009-PSE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/220/2009-PSE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richards, Richard A., 2006. "Physiological traits used in the breeding of new cultivars for water-scarce environments," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 197-211, February.
    2. Kahlown, Muhammad Akram & Raoof, Abdur & Zubair, Muhammad & Kemper, W. Doral, 2007. "Water use efficiency and economic feasibility of growing rice and wheat with sprinkler irrigation in the Indus Basin of Pakistan," Agricultural Water Management, Elsevier, vol. 87(3), pages 292-298, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krishna Ghimire & Isabel McIntyre & Melanie Caffe, 2024. "Evaluation of Morpho-Physiological Traits of Oat ( Avena sativa L.) under Drought Stress," Agriculture, MDPI, vol. 14(1), pages 1-21, January.
    2. Yueping LIANG & Yang GAO & Guangshuai WANG & Zhuanyun SI & Xiaojun SHEN & Aiwang DUAN, 2018. "Luxury transpiration of winter wheat and its responses to deficit irrigation in North China Plain," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 64(8), pages 361-366.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouman, B. A.M., 2007. "A conceptual framework for the improvement of crop water productivity at different spatial scales," Agricultural Systems, Elsevier, vol. 93(1-3), pages 43-60, March.
    2. Ahmad, Mirza Junaid & Iqbal, Muhammad Anjum & Choi, Kyung Sook, 2020. "Climate-driven constraints in sustaining future wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 231(C).
    3. Dong, Baodi & Shi, Lei & Shi, Changhai & Qiao, Yunzhou & Liu, Mengyu & Zhang, Zhengbin, 2011. "Grain yield and water use efficiency of two types of winter wheat cultivars under different water regimes," Agricultural Water Management, Elsevier, vol. 99(1), pages 103-110.
    4. Zhang, Peng & Zhang, Junjie & Chen, Minpeng, 2017. "Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 8-31.
    5. Abdul Rehman & Luan Jingdong & Abbas Ali Chandio & Muhammad Shabbir & Imran Hussain, 2017. "Economic outlook of rice crops in Pakistan: a time series analysis (1970–2015)," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 3(1), pages 1-9, December.
    6. Chamekh Zoubeir & Ines Zouari & Salma Jallouli & Sawsen Ayadi & Sebei Abdenour & Youssef Trifa, 2022. "Breeding for salt tolerance in wheat: The contribution of carbon isotopic signatures," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 58(2), pages 43-54.
    7. Soto-García, M. & Martin-Gorriz, B. & García-Bastida, P.A. & Alcon, F. & Martínez-Alvarez, V., 2013. "Energy consumption for crop irrigation in a semiarid climate (south-eastern Spain)," Energy, Elsevier, vol. 55(C), pages 1084-1093.
    8. Li, Baoru & Zhang, Xiying & Morita, Shigenori & Sekiya, Nobuhito & Araki, Hideki & Gu, Huijie & Han, Jie & Lu, Yang & Liu, Xiuwei, 2022. "Are crop deep roots always beneficial for combating drought: A review of root structure and function, regulation and phenotyping," Agricultural Water Management, Elsevier, vol. 271(C).
    9. Tomáš Středa & Jana Hajzlerová & Jhonny Alba-Mejía & Ivana Jovanović & Nicole Frantová & Hana Středová, 2024. "Quo vadis, breeding for an efficient root system, in the era of climate change?," Czech Journal of Genetics and Plant Breeding, Czech Academy of Agricultural Sciences, vol. 60(4), pages 181-211.
    10. Liu, Haijun & Yu, Lipeng & Luo, Yu & Wang, Xiangping & Huang, Guanhua, 2011. "Responses of winter wheat (Triticum aestivum L.) evapotranspiration and yield to sprinkler irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(4), pages 483-492, February.
    11. Brainard, D.C. & Byl, B. & Hayden, Z.D. & Noyes, D.C. & Bakker, J. & Werling, B., 2019. "Managing drought risk in a changing climate: Irrigation and cultivar impacts on Michigan asparagus," Agricultural Water Management, Elsevier, vol. 213(C), pages 773-781.
    12. Podleśna, A. & Podleśny, J. & Doroszewski, A., 2014. "Usefulness of selected weather indices to evaluation of yellow lupine yielding possibility," Agricultural Water Management, Elsevier, vol. 146(C), pages 201-207.
    13. Mansour, Elsayed & Abdul-Hamid, Mohamed I & Yasin, Mohamed T & Qabil, Naglaa & Attia, Ahmed, 2017. "Identifying drought-tolerant genotypes of barley and their responses to various irrigation levels in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 194(C), pages 58-67.
    14. Salvador, R. & Martínez-Cob, A. & Cavero, J. & Playán, E., 2011. "Seasonal on-farm irrigation performance in the Ebro basin (Spain): Crops and irrigation systems," Agricultural Water Management, Elsevier, vol. 98(4), pages 577-587, February.
    15. Noor Zardari & Ian Cordery, 2009. "Water Productivity in a Rigid Irrigation Delivery System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1025-1040, April.
    16. Xue, Jing & Ren, Li, 2016. "Evaluation of crop water productivity under sprinkler irrigation regime using a distributed agro-hydrological model in an irrigation district of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 350-365.
    17. Středa, Tomáš & Dostál, Vítězslav & Horáková, Vladimíra & Chloupek, Oldřich, 2012. "Effective use of water by wheat varieties with different root system sizes in rain-fed experiments in Central Europe," Agricultural Water Management, Elsevier, vol. 104(C), pages 203-209.
    18. Muhammad Arif Watto & Amin W. Mugera, 2014. "Measuring Production and Irrigation Efficiencies of Rice Farms: Evidence from the Punjab Province, Pakistan," Asian Economic Journal, East Asian Economic Association, vol. 28(3), pages 301-322, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlpse:v:56:y:2010:i:7:id:220-2009-pse. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.