IDEAS home Printed from https://ideas.repec.org/a/caa/jnljfs/v70y2024i12id48-2024-jfs.html
   My bibliography  Save this article

A GLMER-based pedotransfer function expressing the relationship between total organic carbon and bulk density in forest soils

Author

Listed:
  • Václav Zouhar

    (Forest Management Institute - Brandýs nad Labem, Brno branch, Brno, Czech Republic)

  • Aleš Kučera

    (Department of Geology and Soil Science, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic)

  • Karel Drápela

    (Institute of Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic)

Abstract

Owing to its role in mitigating CO2 in the atmosphere, the total organic carbon (TOC) stock of soil, a key component of the terrestrial carbon cycle, is of significant interest as regards climate change. To determine TOC stock, it is first necessary to determine the soil's bulk density (BD), determined through intact soil sampling; however, in forest soils, it can be difficult to determine BD in soils with high levels of stoniness and/or tree root coverage. Furthermore, the method is time-consuming and labour-intensive, making it impractical for studies over large areas. In such cases, BD can be determined using a pedotransfer function (PTF) expressing the relationship between forest soil TOC and BD. The aim of this study was to determine a forest soil PTF using actual data obtained from 777 soil pits dug as part of the Czech Republic's National Forest Inventory (NFI). Within the NFI, BD is assessed from undisturbed core samples, while TOC is assessed from mixed samples from the same soil genetic horizons. Both generalised linear (GLM) and generalised linear mixed-effects (GLMER) models were used, with the final GLMER model best expressing the relationship for individual natural forest areas within the NFI dataset. The GLMER-based PTF described in this study can be widely applied to accurately estimate soil BD via TOC concentration at temperate forest sites where stoniness and/or root cover previously made it technically impossible to take undisturbed samples using standard methods.

Suggested Citation

  • Václav Zouhar & Aleš Kučera & Karel Drápela, 2024. "A GLMER-based pedotransfer function expressing the relationship between total organic carbon and bulk density in forest soils," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 70(12), pages 619-633.
  • Handle: RePEc:caa:jnljfs:v:70:y:2024:i:12:id:48-2024-jfs
    DOI: 10.17221/48/2024-JFS
    as

    Download full text from publisher

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/48/2024-JFS.html
    Download Restriction: free of charge

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/48/2024-JFS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/48/2024-JFS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brian Crnobrna & Irbin B. Llanqui & Anthony Diaz Cardenas & Grober Panduro Pisco, 2022. "Relationships between Organic Matter and Bulk Density in Amazonian Peatland Soils," Sustainability, MDPI, vol. 14(19), pages 1-14, September.
    2. Eric A. Davidson & Ivan A. Janssens, 2006. "Temperature sensitivity of soil carbon decomposition and feedbacks to climate change," Nature, Nature, vol. 440(7081), pages 165-173, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicholas O. E. Ofiti & Michael W. I. Schmidt & Samuel Abiven & Paul J. Hanson & Colleen M. Iversen & Rachel M. Wilson & Joel E. Kostka & Guido L. B. Wiesenberg & Avni Malhotra, 2023. "Climate warming and elevated CO2 alter peatland soil carbon sources and stability," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Md. Zonayet & Alok Kumar Paul & Md. Faisal-E-Alam & Khalid Syfullah & Rui Alexandre Castanho & Daniel Meyer, 2023. "Impact of Biochar as a Soil Conditioner to Improve the Soil Properties of Saline Soil and Productivity of Tomato," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    3. Charlotte J. Alster & Allycia Laar & Jordan P. Goodrich & Vickery L. Arcus & Julie R. Deslippe & Alexis J. Marshall & Louis A. Schipper, 2023. "Quantifying thermal adaptation of soil microbial respiration," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. S . K. Oni & F. Mieres & M. N. Futter & H. Laudon, 2017. "Soil temperature responses to climate change along a gradient of upland–riparian transect in boreal forest," Climatic Change, Springer, vol. 143(1), pages 27-41, July.
    5. Elena A. Mikhailova & Garth R. Groshans & Christopher J. Post & Mark A. Schlautman & Gregory C. Post, 2019. "Valuation of Soil Organic Carbon Stocks in the Contiguous United States Based on the Avoided Social Cost of Carbon Emissions," Resources, MDPI, vol. 8(3), pages 1-15, August.
    6. Patrick J. Michaels, 2008. "Evidence for “Publication Bias†concerning Global Warming in Science and Nature," Energy & Environment, , vol. 19(2), pages 287-301, March.
    7. Zhenghu Zhou & Chengjie Ren & Chuankuan Wang & Manuel Delgado-Baquerizo & Yiqi Luo & Zhongkui Luo & Zhenggang Du & Biao Zhu & Yuanhe Yang & Shuo Jiao & Fazhu Zhao & Andong Cai & Gaihe Yang & Gehong We, 2024. "Global turnover of soil mineral-associated and particulate organic carbon," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Zeyang Zhao & Peng Dong & Bo Fu & Dan Wu & Zhizhong Zhao, 2024. "Labile Fraction of Organic Carbon in Soils from Natural and Plantation Forests of Tropical China," Sustainability, MDPI, vol. 16(17), pages 1-12, September.
    9. Feiyan Chen & Aiwen Lin & Hongji Zhu & Jiqiang Niu, 2018. "Quantifying Climate Change and Ecological Responses within the Yangtze River Basin, China," Sustainability, MDPI, vol. 10(9), pages 1-19, August.
    10. Ang Hu & Kyoung-Soon Jang & Andrew J. Tanentzap & Wenqian Zhao & Jay T. Lennon & Jinfu Liu & Mingjia Li & James Stegen & Mira Choi & Yahai Lu & Xiaojuan Feng & Jianjun Wang, 2024. "Thermal responses of dissolved organic matter under global change," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Li Gao & Mingjing Huang & Wuping Zhang & Lei Qiao & Guofang Wang & Xumeng Zhang, 2021. "Comparative Study on Spatial Digital Mapping Methods of Soil Nutrients Based on Different Geospatial Technologies," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
    12. Wenhao Zhang & Guofeng Zhu & Qiaozhuo Wan & Siyu Lu & Ling Zhao & Dongdong Qiu & Xinrui Lin, 2023. "Influence of Irrigation on Vertical Migration of Soil Organic Carbon in Arid Area of Inland River," Land, MDPI, vol. 12(8), pages 1-14, August.
    13. Raitis Normunds Meļņiks & Arta Bārdule & Aldis Butlers & Jordane Champion & Santa Kalēja & Ilona Skranda & Guna Petaja & Andis Lazdiņš, 2023. "Carbon Losses from Topsoil in Abandoned Peat Extraction Sites Due to Ground Subsidence and Erosion," Land, MDPI, vol. 12(12), pages 1-17, December.
    14. Xiangwen Wu & Shuying Zang & Dalong Ma & Jianhua Ren & Qiang Chen & Xingfeng Dong, 2019. "Emissions of CO 2 , CH 4 , and N 2 O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China," IJERPH, MDPI, vol. 16(16), pages 1-14, August.
    15. Husnain Husnain & I. Wigena & Ai Dariah & Setiari Marwanto & Prihasto Setyanto & Fahmuddin Agus, 2014. "CO 2 emissions from tropical drained peat in Sumatra, Indonesia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(6), pages 845-862, August.
    16. Nikolay Gorbach & Viktor Startsev & Anton Mazur & Evgeniy Milanovskiy & Anatoly Prokushkin & Alexey Dymov, 2022. "Simulation of Smoldering Combustion of Organic Horizons at Pine and Spruce Boreal Forests with Lab-Heating Experiments," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    17. S. Chersich & K. Rejšek & V. Vranová & M. Bordoni & C. Meisina, 2015. "Climate change impacts on the Alpine ecosystem: an overview with focus on the soil," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 61(11), pages 496-514.
    18. Mandal, Sudipto & Ray, Santanu & Ghosh, Phani Bhusan, 2009. "Modelling of the contribution of dissolved inorganic nitrogen (DIN) from litterfall of adjacent mangrove forest to Hooghly–Matla estuary, India," Ecological Modelling, Elsevier, vol. 220(21), pages 2988-3000.
    19. Yuanbo Cao & Huijie Xiao & Baitian Wang & Yunlong Zhang & Honghui Wu & Xijing Wang & Yadong Yang & Tingting Wei, 2021. "Soil Respiration May Overestimate or Underestimate in Forest Ecosystems," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
    20. Yuxin Ma & Budiman Minasny & Valérie Viaud & Christian Walter & Brendan Malone & Alex McBratney, 2023. "Modelling the Whole Profile Soil Organic Carbon Dynamics Considering Soil Redistribution under Future Climate Change and Landscape Projections over the Lower Hunter Valley, Australia," Land, MDPI, vol. 12(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnljfs:v:70:y:2024:i:12:id:48-2024-jfs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.