IDEAS home Printed from https://ideas.repec.org/a/caa/jnljfs/v69y2023i8id191-2022-jfs.html
   My bibliography  Save this article

Sap flow modelling based on global radiation and canopy parameters derived from a digital surface model

Author

Listed:
  • Tomáš Mikita

    (Department of Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic)

  • Zdeněk Patočka

    (Department of Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic)

  • Elizaveta Avoiani

    (Department of Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic)

Abstract

Sap flow represents water transport from roots to leaves through the xylem and is used to describe tree transpiration. This paper proposed and tested a procedure to estimate sap flow by calculating global radiation in a digital model of the tree canopy surface obtained by unmanned aerial vehicle imaging. The sap flow of nine trees was continuously measured in the field. In the digital surface model, individual canopies were automatically delineated, their parameters were determined and the global radiation incident on their surface on specific days was calculated. A polynomial relationship was found between sap flow and the calculated incident solar radiation during the morning hours with a coefficient of determination of 0.98, as well as a linear relationship between the decrease in radiation and sap flow during the afternoon with a correlation coefficient of 0.99. Using the Random Forest machine learning method, a model predicting the sap flow of the trees was created based on the global radiation and canopy parameters determined from the digital surface model of tree canopies. The resulting model was deployed on additional days and compared to field measurements of sap flow, achieving a correlation coefficient of 0.918. In addition, two linear regression models were created for a tree group, achieving coefficients of determination of 0.66 and 0.90.

Suggested Citation

  • Tomáš Mikita & Zdeněk Patočka & Elizaveta Avoiani, 2023. "Sap flow modelling based on global radiation and canopy parameters derived from a digital surface model," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 69(8), pages 348-359.
  • Handle: RePEc:caa:jnljfs:v:69:y:2023:i:8:id:191-2022-jfs
    DOI: 10.17221/191/2022-JFS
    as

    Download full text from publisher

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/191/2022-JFS.html
    Download Restriction: free of charge

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/191/2022-JFS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/191/2022-JFS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Yu & Cui, Ningbo & Gong, Daozhi & Zhang, Qingwen & Zhao, Lu, 2017. "Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling," Agricultural Water Management, Elsevier, vol. 193(C), pages 163-173.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao, Hai & Diop, Lamine & Bodian, Ansoumana & Djaman, Koffi & Ndiaye, Papa Malick & Yaseen, Zaher Mundher, 2018. "Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso," Agricultural Water Management, Elsevier, vol. 208(C), pages 140-151.
    2. Ali Mokhtar & Nadhir Al-Ansari & Wessam El-Ssawy & Renata Graf & Pouya Aghelpour & Hongming He & Salma M. Hafez & Mohamed Abuarab, 2023. "Prediction of Irrigation Water Requirements for Green Beans-Based Machine Learning Algorithm Models in Arid Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1557-1580, March.
    3. Roy, Dilip Kumar & Lal, Alvin & Sarker, Khokan Kumer & Saha, Kowshik Kumar & Datta, Bithin, 2021. "Optimization algorithms as training approaches for prediction of reference evapotranspiration using adaptive neuro fuzzy inference system," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Bellido-Jiménez, Juan Antonio & Estévez, Javier & García-Marín, Amanda Penélope, 2021. "New machine learning approaches to improve reference evapotranspiration estimates using intra-daily temperature-based variables in a semi-arid region of Spain," Agricultural Water Management, Elsevier, vol. 245(C).
    5. Lu, Yingjie & Li, Tao & Hu, Hui & Zeng, Xuemei, 2023. "Short-term prediction of reference crop evapotranspiration based on machine learning with different decomposition methods in arid areas of China," Agricultural Water Management, Elsevier, vol. 279(C).
    6. Yamaç, Sevim Seda, 2021. "Artificial intelligence methods reliably predict crop evapotranspiration with different combinations of meteorological data for sugar beet in a semiarid area," Agricultural Water Management, Elsevier, vol. 254(C).
    7. Chen, Han & Huang, Jinhui Jeanne & McBean, Edward, 2020. "Partitioning of daily evapotranspiration using a modified shuttleworth-wallace model, random Forest and support vector regression, for a cabbage farmland," Agricultural Water Management, Elsevier, vol. 228(C).
    8. Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    9. Mohammadi, Babak & Mehdizadeh, Saeid, 2020. "Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm," Agricultural Water Management, Elsevier, vol. 237(C).
    10. Deo, Ravinesh C. & Ahmed, A.A. Masrur & Casillas-Pérez, David & Pourmousavi, S. Ali & Segal, Gary & Yu, Yanshan & Salcedo-Sanz, Sancho, 2023. "Cloud cover bias correction in numerical weather models for solar energy monitoring and forecasting systems with kernel ridge regression," Renewable Energy, Elsevier, vol. 203(C), pages 113-130.
    11. Long Qian & Lifeng Wu & Xiaogang Liu & Yaokui Cui & Yongwen Wang, 2022. "Comparison of CLDAS and Machine Learning Models for Reference Evapotranspiration Estimation under Limited Meteorological Data," Sustainability, MDPI, vol. 14(21), pages 1-24, November.
    12. Chen, Baoqing & Liu, Enke & Mei, Xurong & Yan, Changrong & Garré, Sarah, 2018. "Modelling soil water dynamic in rain-fed spring maize field with plastic mulching," Agricultural Water Management, Elsevier, vol. 198(C), pages 19-27.
    13. Wu, Lifeng & Peng, Youwen & Fan, Junliang & Wang, Yicheng & Huang, Guomin, 2021. "A novel kernel extreme learning machine model coupled with K-means clustering and firefly algorithm for estimating monthly reference evapotranspiration in parallel computation," Agricultural Water Management, Elsevier, vol. 245(C).
    14. Tianao Wu & Wei Zhang & Xiyun Jiao & Weihua Guo & Yousef Alhaj Hamoud, 2020. "Comparison of five Boosting-based models for estimating daily reference evapotranspiration with limited meteorological variables," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-28, June.
    15. Chen, Xiuzhi & Liu, Chang & van Oel, Pieter & Mergia Mekonnen, Mesfin & Thorp, Kelly R. & Yin, Tuo & Wang, Jinyan & Muhammad, Tahir & Li, Yunkai, 2022. "Water and carbon risks within hydropower development on national scale," Applied Energy, Elsevier, vol. 325(C).
    16. Xing, Liwen & Cui, Ningbo & Liu, Chunwei & Zhao, Lu & Guo, Li & Du, Taisheng & Zhan, Cun & Wu, Zongjun & Wen, Shenglin & Jiang, Shouzheng, 2022. "Estimation of daily apple tree transpiration in the Loess Plateau region of China using deep learning models," Agricultural Water Management, Elsevier, vol. 273(C).
    17. Malik, Anurag & Jamei, Mehdi & Ali, Mumtaz & Prasad, Ramendra & Karbasi, Masoud & Yaseen, Zaher Mundher, 2022. "Multi-step daily forecasting of reference evapotranspiration for different climates of India: A modern multivariate complementary technique reinforced with ridge regression feature selection," Agricultural Water Management, Elsevier, vol. 272(C).
    18. Bellido-Jiménez, Juan A. & Estévez, Javier & García-Marín, Amanda P., 2022. "A regional machine learning method to outperform temperature-based reference evapotranspiration estimations in Southern Spain," Agricultural Water Management, Elsevier, vol. 274(C).
    19. Fan, Junliang & Ma, Xin & Wu, Lifeng & Zhang, Fucang & Yu, Xiang & Zeng, Wenzhi, 2019. "Light Gradient Boosting Machine: An efficient soft computing model for estimating daily reference evapotranspiration with local and external meteorological data," Agricultural Water Management, Elsevier, vol. 225(C).
    20. Dong, Juan & Xing, Liwen & Cui, Ningbo & Zhao, Lu & Guo, Li & Wang, Zhihui & Du, Taisheng & Tan, Mingdong & Gong, Daozhi, 2024. "Estimating reference crop evapotranspiration using improved convolutional bidirectional long short-term memory network by multi-head attention mechanism in the four climatic zones of China," Agricultural Water Management, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnljfs:v:69:y:2023:i:8:id:191-2022-jfs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.