IDEAS home Printed from https://ideas.repec.org/a/caa/jnljfs/v67y2021i2id50-2020-jfs.html
   My bibliography  Save this article

Forest fire spatial modelling using ordered weighted averaging multi-criteria evaluation

Author

Listed:
  • Hassan Faramarzi

    (Department of Natural Resources, Tarbiat Modares University, Tehran, Iran)

  • Seyd Mohsen Hosseini

    (Department of Natural Resources, Tarbiat Modares University, Tehran, Iran)

  • Hamid Reza Pourghasemi

    (Department of Natural Resources and Environment Engineering, College of Agriculture, Shiraz University, Shiraz, Iran)

  • Mahdi Farnaghi

    (Department of Geo-Information Processing (GIP), Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the Netherlands)

Abstract

Forest fires are a major environmental issue because they are increasing as a consequence of climate change and global warming. The present study was aimed to model forest fire hazard using the ordered weighted averaging (OWA) multi-criteria evaluation algorithm and to determine the role of human, climatic, and environmental factors in forest fire occurrence within the Golestan National Park (GNP), Iran. The database used for the present study was created according to daily classification of climate changes, environmental basic maps, and human-made influential forest fire factors. In the study area, the forest fires were registered using GPS. Expert opinions were applied through the analytic hierarchy process (AHP) to determine the importance of effective factors. Fuzzy membership functions were used to standardize the thematic layers. The fire risk maps were prepared using different OWA scenarios for man-made, climatic, and environment factors. The findings revealed that roads (weight = 0.288), rainfalls (weight = 0.288), and aspects (weight = 0.255) are the major factors that contribute to the occurrence of forest fire in the study area. The forest fire maps prepared from different scenarios were validated using the relative operating characteristic (ROC) curve. Values of forest fire maps acquired from scenarios of human, environment, climate factors and their combination were 0.87, 0.731, 0.773 and 0.819, respectively.

Suggested Citation

  • Hassan Faramarzi & Seyd Mohsen Hosseini & Hamid Reza Pourghasemi & Mahdi Farnaghi, 2021. "Forest fire spatial modelling using ordered weighted averaging multi-criteria evaluation," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 67(2), pages 87-100.
  • Handle: RePEc:caa:jnljfs:v:67:y:2021:i:2:id:50-2020-jfs
    DOI: 10.17221/50/2020-JFS
    as

    Download full text from publisher

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/50/2020-JFS.html
    Download Restriction: free of charge

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/50/2020-JFS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/50/2020-JFS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claus Rinner & Jacek Malczewski, 2002. "Web-enabled spatial decision analysis using Ordered Weighted Averaging (OWA)," Journal of Geographical Systems, Springer, vol. 4(4), pages 385-403, December.
    2. Cantarello, Elena & Newton, Adrian C. & Hill, Ross A. & Tejedor-Garavito, Natalia & Williams-Linera, Guadalupe & López-Barrera, Fabiola & Manson, Robert H. & Golicher, Duncan J., 2011. "Simulating the potential for ecological restoration of dryland forests in Mexico under different disturbance regimes," Ecological Modelling, Elsevier, vol. 222(5), pages 1112-1128.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Tao & Young, Rhonda, 2010. "Multiple Choice Knapsack Problem: Example of planning choice in transportation," Evaluation and Program Planning, Elsevier, vol. 33(2), pages 128-137, May.
    2. Zhu, Bin & Xu, Zeshui & Zhang, Ren & Hong, Mei, 2016. "Hesitant analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 250(2), pages 602-614.
    3. Karim Solaimani & Fatemeh Shokrian & Shadman Darvishi, 2023. "An Assessment of the Integrated Multi-Criteria and New Models Efficiency in Watershed Flood Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 403-425, January.
    4. Georgia Kandilioti & Christos Makropoulos, 2012. "Preliminary flood risk assessment: the case of Athens," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 441-468, March.
    5. Arthur Lehner & Christoph Erlacher & Matthias Schlögl & Jacob Wegerer & Thomas Blaschke & Klaus Steinnocher, 2018. "Can ISO-Defined Urban Sustainability Indicators Be Derived from Remote Sensing: An Expert Weighting Approach," Sustainability, MDPI, vol. 10(4), pages 1-31, April.
    6. Cristina Martínez-Garza & Eliane Ceccon & Moisés Méndez-Toribio, 2022. "Ecological and Social Limitations for Mexican Dry Forest Restoration: A Systematic Review," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    7. Klimberg, Ronald & Ratick, Samuel, 2023. "Benchmarking nursing homes using the Order Rated Effectiveness model," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    8. Shorabeh, Saman Nadizadeh & Firozjaei, Mohammad Karimi & Nematollahi, Omid & Firozjaei, Hamzeh Karimi & Jelokhani-Niaraki, Mohammadreza, 2019. "A risk-based multi-criteria spatial decision analysis for solar power plant site selection in different climates: A case study in Iran," Renewable Energy, Elsevier, vol. 143(C), pages 958-973.
    9. Elia A Machado & Samuel Ratick, 2018. "Implications of indicator aggregation methods for global change vulnerability reduction efforts," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(7), pages 1109-1141, October.
    10. Miller, Harvey J. & Witlox, Frank & Tribby, Calvin P., 2013. "Developing context-sensitive livability indicators for transportation planning: a measurement framework," Journal of Transport Geography, Elsevier, vol. 26(C), pages 51-64.
    11. Hassan Faramarzi & Seyed Mohsen Hosseini & Hamid Reza Pourghasemi & Mahdi Farnaghi, 2023. "Using machine learning techniques in multi-hazards assessment of Golestan National Park, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 3231-3255, July.
    12. Arika Ligmann-Zielinska & Daniel B Kramer & Kendra Spence Cheruvelil & Patricia A Soranno, 2014. "Using Uncertainty and Sensitivity Analyses in Socioecological Agent-Based Models to Improve Their Analytical Performance and Policy Relevance," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-13, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnljfs:v:67:y:2021:i:2:id:50-2020-jfs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.