IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v37y2023i1d10.1007_s11269-022-03380-1.html
   My bibliography  Save this article

An Assessment of the Integrated Multi-Criteria and New Models Efficiency in Watershed Flood Mapping

Author

Listed:
  • Karim Solaimani

    (Sari University of Agricultural Sci. & Natural Resources)

  • Fatemeh Shokrian

    (Sari University of Agricultural Sci. & Natural Resources)

  • Shadman Darvishi

    (Haraz Higher Education Institute)

Abstract

Iran is one of the flood-prone areas in the world with inappropriate climatic patterns. In this study, flood risk maps in three scenarios by combining Analytic Hierarchy Process (AHP), Analytical Network Process (ANP) and Fuzzy Analytic Hierarchy Process (FAHP) models with Ordered Weighted Average (OWA), Weighted Linear Combination (WLC) models., Local Weighted Linear Combination (LWLC) and two new models, Weighted Multi-Criteria Analysis (WMCA) and Geo Technique for Order of Preference by Similarity to Ideal Solution (Geo TOPSIS) were prepared from Heraz watershed in northern Iran. The analysis of the results of the AHP model in the first scenario, the ANP model in the second scenario and the FAHP model in the third scenario show that the criteria of precipitation, slope, land use, elevation, drainage density and distance to river are the most important criteria for the occurrence of floods in Haraz basin. Evaluation of flood risk models show that on average, about 70%, 20%, 8%, and 2% of Haraz basin are in medium, low, high, and no flood risk situations, respectively. Geographically, the southeastern and central parts are in high and low flood risk, respectively, and other parts of the basin are in medium risk. In this basin, many forest lands, pastures, agriculture and population centers are in medium and high risk of flooding. Generally, based on the obtained results, WMCA and Geo TOPSIS models along with WLC, LWLC and OWA models are effective methods for flood risk studies and based on the obtained results, Haraz basin needs necessary planning for flood risk management.

Suggested Citation

  • Karim Solaimani & Fatemeh Shokrian & Shadman Darvishi, 2023. "An Assessment of the Integrated Multi-Criteria and New Models Efficiency in Watershed Flood Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 403-425, January.
  • Handle: RePEc:spr:waterr:v:37:y:2023:i:1:d:10.1007_s11269-022-03380-1
    DOI: 10.1007/s11269-022-03380-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-022-03380-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-022-03380-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sofia Melo Vasconcellos & Masato Kobiyama & Fernanda Stachowski Dagostin & Claudia Weber Corseuil & Vinicius Santana Castiglio, 2021. "Flood Hazard Mapping in Alluvial Fans with Computational Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(5), pages 1463-1478, March.
    2. Na Li & Shenglian Guo & Feng Xiong & Jun Wang & Yuzuo Xie, 2022. "Comparative Study of Flood Coincidence Risk Estimation Methods in the Mainstream and its Tributaries," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 683-698, January.
    3. Claus Rinner & Jacek Malczewski, 2002. "Web-enabled spatial decision analysis using Ordered Weighted Averaging (OWA)," Journal of Geographical Systems, Springer, vol. 4(4), pages 385-403, December.
    4. Guozhen Wei & Wei Ding & Guohua Liang & Bin He & Jian Wu & Rui Zhang & Huicheng Zhou, 2022. "A New Framework Based on Data-Based Mechanistic Model and Forgetting Mechanism for Flood Forecast," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3591-3607, August.
    5. Yasser Ebrahimian Ghajari & Ali Asghar Alesheikh & Mahdi Modiri & Reza Hosnavi & Morteza Abbasi, 2017. "Spatial Modelling of Urban Physical Vulnerability to Explosion Hazards Using GIS and Fuzzy MCDA," Sustainability, MDPI, vol. 9(7), pages 1-29, July.
    6. Xiang Wang & Guo Chen & Xiaoai Dai & Jingjing Zhao & Xian Liu & Yu Gao & Junmin Zhang & Yongjun Chen & Xiaozhen Li & Wenyi Qin & Peng Wang, 2022. "Improved Process Management of Glacial Lake Outburst Flood Hazards by Integrating Modular Monitoring, Assessment, and Simulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2343-2358, May.
    7. Jiun-Huei Jang & Petr Vohnicky & Yen-Lien Kuo, 2021. "Improvement of Flood Risk Analysis Via Downscaling of Hazard and Vulnerability Maps," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2215-2230, May.
    8. Yangfan Xiao & Shanzhen Yi & Zhongqian Tang, 2018. "A Spatially Explicit Multi-Criteria Analysis Method on Solving Spatial Heterogeneity Problems for Flood Hazard Assessment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3317-3335, August.
    9. Yukiko Hirabayashi & Roobavannan Mahendran & Sujan Koirala & Lisako Konoshima & Dai Yamazaki & Satoshi Watanabe & Hyungjun Kim & Shinjiro Kanae, 2013. "Global flood risk under climate change," Nature Climate Change, Nature, vol. 3(9), pages 816-821, September.
    10. Brad Carter & Claus Rinner, 2014. "Locally weighted linear combination in a vector geographic information system," Journal of Geographical Systems, Springer, vol. 16(3), pages 343-361, July.
    11. Yu Duan & Junnan Xiong & Weiming Cheng & Nan Wang & Yi Li & Yufeng He & Jun Liu & Wen He & Gang Yang, 2022. "Flood vulnerability assessment using the triangular fuzzy number-based analytic hierarchy process and support vector machine model for the Belt and Road region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 269-294, January.
    12. Adam Mubeen & Laddaporn Ruangpan & Zoran Vojinovic & Arlex Sanchez Torrez & Jasna Plavšić, 2021. "Planning and Suitability Assessment of Large-scale Nature-based Solutions for Flood-risk Reduction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3063-3081, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hüseyin Akay, 2024. "Flood Susceptibility Mapping Using Information Fusion Paradigm Integrated with Decision Trees," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(13), pages 5365-5383, October.
    2. Erfan Mahmoodi & Mahmood Azari & Mohammad Taghi Dastorani & Aryan Salvati, 2024. "Comparison of Hydrological Modeling, Artificial Neural Networks and Multi-Criteria Decision Making Approaches for Determining Flood Source Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(13), pages 5343-5363, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yutao & Sun, Mingxing & Song, Baimin, 2017. "Public perceptions of and willingness to pay for sponge city initiatives in China," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 11-20.
    2. Xin Wen & Ana María Alarcón Ferreira & Lynn M. Rae & Hirmand Saffari & Zafar Adeel & Laura A. Bakkensen & Karla M. Méndez Estrada & Gregg M. Garfin & Renee A. McPherson & Ernesto Franco Vargas, 2022. "A Comprehensive Methodology for Evaluating the Economic Impacts of Floods: An Application to Canada, Mexico, and the United States," Sustainability, MDPI, vol. 14(21), pages 1-27, October.
    3. Haixing Liu & Yuntao Wang & Chi Zhang & Albert S. Chen & Guangtao Fu, 2018. "Assessing real options in urban surface water flood risk management under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 1-18, October.
    4. Rei Itsukushima & Yohei Ogahara & Yuki Iwanaga & Tatsuro Sato, 2018. "Investigating the Influence of Various Stormwater Runoff Control Facilities on Runoff Control Efficiency in a Small Catchment Area," Sustainability, MDPI, vol. 10(2), pages 1-12, February.
    5. Mook Bangalore & Andrew Smith & Ted Veldkamp, 2019. "Exposure to Floods, Climate Change, and Poverty in Vietnam," Economics of Disasters and Climate Change, Springer, vol. 3(1), pages 79-99, April.
    6. Zhong, Tao & Young, Rhonda, 2010. "Multiple Choice Knapsack Problem: Example of planning choice in transportation," Evaluation and Program Planning, Elsevier, vol. 33(2), pages 128-137, May.
    7. Tran, Thi Xuyen, 2021. "Typhoon and Agricultural Production Portfolio -Empirical Evidence for a Developing Economy," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242411, Verein für Socialpolitik / German Economic Association.
    8. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    9. Dilshad Ahmad & Muhammad Afzal, 2021. "Impact of climate change on pastoralists’ resilience and sustainable mitigation in Punjab, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11406-11426, August.
    10. Md. Uzzal Mia & Tahmida Naher Chowdhury & Rabin Chakrabortty & Subodh Chandra Pal & Mohammad Khalid Al-Sadoon & Romulus Costache & Abu Reza Md. Towfiqul Islam, 2023. "Flood Susceptibility Modeling Using an Advanced Deep Learning-Based Iterative Classifier Optimizer," Land, MDPI, vol. 12(4), pages 1-26, April.
    11. Roopam Shukla & Ankit Agarwal & Kamna Sachdeva & Juergen Kurths & P. K. Joshi, 2019. "Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas," Climatic Change, Springer, vol. 152(1), pages 103-119, January.
    12. Muluneh Legesse Edamo & Samuel Dagalo Hatiye & Thomas T. Minda & Tigistu Yisihak Ukumo, 2023. "Flood inundation and risk mapping under climate change scenarios in the lower Bilate catchment, Ethiopia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2199-2226, September.
    13. S. A. Mashi & A. I. Inkani & Oghenejeabor Obaro & A. S. Asanarimam, 2020. "Community perception, response and adaptation strategies towards flood risk in a traditional African city," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1727-1759, September.
    14. Ebrahim Ahmadisharaf & Alfred J. Kalyanapu & Eun-Sung Chung, 2017. "Sustainability-Based Flood Hazard Mapping of the Swannanoa River Watershed," Sustainability, MDPI, vol. 9(10), pages 1-15, September.
    15. Maruyama Rentschler,Jun Erik & Salhab,Melda, 2020. "People in Harm's Way : Flood Exposure and Poverty in 189 Countries," Policy Research Working Paper Series 9447, The World Bank.
    16. Shuhei Yoshimoto & Giriraj Amarnath, 2018. "Application of a flood inundation model to analyze the potential impacts of a flood control plan in Mundeni Aru river basin, Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 491-513, March.
    17. Zhu, Bin & Xu, Zeshui & Zhang, Ren & Hong, Mei, 2016. "Hesitant analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 250(2), pages 602-614.
    18. Abdur Rahim Hamidi & Jiangwei Wang & Shiyao Guo & Zhongping Zeng, 2020. "Flood vulnerability assessment using MOVE framework: a case study of the northern part of district Peshawar, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(2), pages 385-408, March.
    19. Yang Li & Jingjing Pei & Fang Zhang, 2023. "Comprehensive Ecological Planning and Evaluation of Towns from the Perspective of Sustainable Development," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    20. Álvarez, Xana & Gómez-Rúa, María & Vidal-Puga, Juan, 2019. "Risk prevention of land flood: A cooperative game theory approach," MPRA Paper 91515, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:37:y:2023:i:1:d:10.1007_s11269-022-03380-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.