IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v26y2008i1p35-51n4.html
   My bibliography  Save this article

A kernel-based classifier on a Riemannian manifold

Author

Listed:
  • Loubes Jean-Michel
  • Pelletier Bruno

    (Université Montpellier II, CC 051, Institut de Mathématiques et de Modélisation de Mo, Montellier Cedex 5, Frankreich)

Abstract

Let X be a random variable taking values in a compact Riemannian manifold without boundary, and let Y be a discrete random variable valued in {0;1} which represents a classification label. We introduce a kernel rule for classification on the manifold based on n independent copies of (X,Y). Under mild assumptions on the bandwidth sequence, it is shown that this kernel rule is consistent in the sense that its probability of error converges to the Bayes risk with probability one.

Suggested Citation

  • Loubes Jean-Michel & Pelletier Bruno, 2008. "A kernel-based classifier on a Riemannian manifold," Statistics & Risk Modeling, De Gruyter, vol. 26(1), pages 35-51, March.
  • Handle: RePEc:bpj:strimo:v:26:y:2008:i:1:p:35-51:n:4
    DOI: 10.1524/stnd.2008.0911
    as

    Download full text from publisher

    File URL: https://doi.org/10.1524/stnd.2008.0911
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1524/stnd.2008.0911?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pelletier, Bruno, 2005. "Kernel density estimation on Riemannian manifolds," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 297-304, July.
    2. Hendriks, H. & Janssen, J. H. M. & Ruymgaart, F. H., 1993. "Strong uniform convergence of density estimators on compact Euclidean manifolds," Statistics & Probability Letters, Elsevier, vol. 16(4), pages 305-311, March.
    3. El Khattabi, Sana & Streit, Franz, 1996. "Identification analysis in directional statistics," Computational Statistics & Data Analysis, Elsevier, vol. 23(1), pages 45-63, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guillermo Henry & Daniela Rodriguez, 2009. "Robust nonparametric regression on Riemannian manifolds," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(5), pages 611-628.
    2. Rabi Bhattacharya & Rachel Oliver, 2019. "Nonparametric Analysis of Non-Euclidean Data on Shapes and Images," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 1-36, February.
    3. Khardani, Salah & Yao, Anne Françoise, 2022. "Nonparametric recursive regression estimation on Riemannian Manifolds," Statistics & Probability Letters, Elsevier, vol. 182(C).
    4. Berry, Tyrus & Sauer, Timothy, 2017. "Density estimation on manifolds with boundary," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 1-17.
    5. Kim, Yoon Tae & Park, Hyun Suk, 2013. "Geometric structures arising from kernel density estimation on Riemannian manifolds," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 112-126.
    6. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    7. Hielscher, Ralf & Lippert, Laura, 2021. "Locally isometric embeddings of quotients of the rotation group modulo finite symmetries," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    8. García-Portugués, Eduardo & Crujeiras, Rosa M. & González-Manteiga, Wenceslao, 2013. "Kernel density estimation for directional–linear data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 152-175.
    9. Asta, Dena Marie, 2021. "Kernel density estimation on symmetric spaces of non-compact type," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    10. Pelletier, Bruno, 2005. "Kernel density estimation on Riemannian manifolds," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 297-304, July.
    11. Di Marzio, Marco & Fensore, Stefania & Panzera, Agnese & Taylor, Charles C., 2019. "Kernel density classification for spherical data," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 23-29.
    12. S Ward & H S Battey & E A K Cohen, 2023. "Nonparametric estimation of the intensity function of a spatial point process on a Riemannian manifold," Biometrika, Biometrika Trust, vol. 110(4), pages 1009-1021.
    13. Ouimet, Frédéric, 2022. "A symmetric matrix-variate normal local approximation for the Wishart distribution and some applications," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    14. Klemelä, Jussi, 2000. "Estimation of Densities and Derivatives of Densities with Directional Data," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 18-40, April.
    15. Arnone, Eleonora & Ferraccioli, Federico & Pigolotti, Clara & Sangalli, Laura M., 2022. "A roughness penalty approach to estimate densities over two-dimensional manifolds," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    16. Ki, Dohyeong & Park, Byeong U., 2021. "Intrinsic Hölder classes of density functions on Riemannian manifolds and lower bounds to convergence rates," Statistics & Probability Letters, Elsevier, vol. 169(C).
    17. Hall, Peter & Yatchew, Adonis, 2010. "Nonparametric least squares estimation in derivative families," Journal of Econometrics, Elsevier, vol. 157(2), pages 362-374, August.
    18. Cheongjae Jang & Yung-Kyun Noh & Frank Chongwoo Park, 2021. "A Riemannian geometric framework for manifold learning of non-Euclidean data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 673-699, September.
    19. Mu Niu & Pokman Cheung & Lizhen Lin & Zhenwen Dai & Neil Lawrence & David Dunson, 2019. "Intrinsic Gaussian processes on complex constrained domains," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 81(3), pages 603-627, July.
    20. Lizhen Lin & Brian St. Thomas & Hongtu Zhu & David B. Dunson, 2017. "Extrinsic Local Regression on Manifold-Valued Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1261-1273, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:26:y:2008:i:1:p:35-51:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.