IDEAS home Printed from https://ideas.repec.org/a/bpj/strimo/v25y2007i1-2007p21n2.html
   My bibliography  Save this article

Decision theoretic Bayesian hypothesis testing with the selection goal

Author

Listed:
  • Bansal Naveen K.

Abstract

Consider a probability model Pθ,α, where θ=(θ1,θ2,…,θk)T is a parameter vector of interest, and α is some nuisance parameter. The problem of testing null hypothesis H0: θ1=θ2=…=θk against selecting one of k alternative hypotheses Hi:θi=θ[k] > θ[1], i=1,2,…,k, where θ[k]=max{θ1,θ2,…,θk} and θ[1]=min{θ1,θ2,…,θk}, is formulated from a Bayesian decision theoretic point of view. This problem can be viewed as selecting a component with the largest parameter value if the null hypothesis is rejected. General results are obtained for the Bayes rule under monotonic permutation invariant loss functions. Bayes rules are obtained for k one-parameter exponential families of distributions under conjugate priors. The example of normal populations is considered in more detail under the non-informative (improper) priors. It is demonstrated through this example that the classical hypothesis testing yields a poor power as compared to the Bayes rules when the alternatives are such that a small fraction of the components of θ have significantly high values while most of them have low values. Consequences of this for the high dimensional data such as microarray data are pointed out.

Suggested Citation

  • Bansal Naveen K., 2007. "Decision theoretic Bayesian hypothesis testing with the selection goal," Statistics & Risk Modeling, De Gruyter, vol. 25(1), pages 19-39, January.
  • Handle: RePEc:bpj:strimo:v:25:y:2007:i:1/2007:p:21:n:2
    DOI: 10.1524/stnd.2007.25.1.19
    as

    Download full text from publisher

    File URL: https://doi.org/10.1524/stnd.2007.25.1.19
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1524/stnd.2007.25.1.19?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abughalous, Mansour M. & Bansal, Naveen K., 1995. "On selecting the best natural exponential families with quadratic variance function," Statistics & Probability Letters, Elsevier, vol. 25(4), pages 341-349, December.
    2. Naveen Bansal & Sudhir Gupta, 1997. "On the natural selection rule in general linear models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 46(1), pages 59-69, January.
    3. Ishwaran H. & Rao J.S., 2003. "Detecting Differentially Expressed Genes in Microarrays Using Bayesian Model Selection," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 438-455, January.
    4. Efron B. & Tibshirani R. & Storey J.D. & Tusher V., 2001. "Empirical Bayes Analysis of a Microarray Experiment," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1151-1160, December.
    5. Bansal, Naveen K. & Misra, Neeraj & van der Meulen, Edward C., 1997. "On the minimax decision rules in ranking problems," Statistics & Probability Letters, Elsevier, vol. 34(2), pages 179-186, June.
    6. Yoav Benjamini & Daniel Yekutieli, 2005. "False Discovery Rate-Adjusted Multiple Confidence Intervals for Selected Parameters," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 71-81, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. HyungJun Cho & Jaewoo Kang & Jae Lee, 2009. "Empirical Bayes analysis of unreplicated microarray data," Computational Statistics, Springer, vol. 24(3), pages 393-408, August.
    2. Dazard, Jean-Eudes & Sunil Rao, J., 2012. "Joint adaptive mean–variance regularization and variance stabilization of high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2317-2333.
    3. Montazeri Zahra & Yanofsky Corey M. & Bickel David R., 2010. "Shrinkage Estimation of Effect Sizes as an Alternative to Hypothesis Testing Followed by Estimation in High-Dimensional Biology: Applications to Differential Gene Expression," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    4. Bickel David R., 2012. "Empirical Bayes Interval Estimates that are Conditionally Equal to Unadjusted Confidence Intervals or to Default Prior Credibility Intervals," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-34, February.
    5. Ishwaran, Hemant & Sunil Rao, J., 2008. "Clustering gene expression profile data by selective shrinkage," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1490-1497, September.
    6. Youngchao Ge & Sandrine Dudoit & Terence Speed, 2003. "Resampling-based multiple testing for microarray data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-77, June.
    7. Pounds Stanley B. & Gao Cuilan L. & Zhang Hui, 2012. "Empirical Bayesian Selection of Hypothesis Testing Procedures for Analysis of Sequence Count Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-32, October.
    8. Niels Lundtorp Olsen & Alessia Pini & Simone Vantini, 2021. "False discovery rate for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 784-809, September.
    9. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    10. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    11. Dørum Guro & Snipen Lars & Solheim Margrete & Saebo Solve, 2011. "Smoothing Gene Expression Data with Network Information Improves Consistency of Regulated Genes," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-26, August.
    12. Daniel Yekutieli, 2015. "Bayesian tests for composite alternative hypotheses in cross-tabulated data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 287-301, June.
    13. Ghosh Debashis, 2012. "Incorporating the Empirical Null Hypothesis into the Benjamini-Hochberg Procedure," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(4), pages 1-21, July.
    14. Ruth Heller & Saharon Rosset, 2021. "Optimal control of false discovery criteria in the two‐group model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 133-155, February.
    15. Yu Lianbo & Gulati Parul & Fernandez Soledad & Pennell Michael & Kirschner Lawrence & Jarjoura David, 2011. "Fully Moderated T-statistic for Small Sample Size Gene Expression Arrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, September.
    16. Werft, W. & Benner, A. & Kopp-Schneider, A., 2012. "On the identification of predictive biomarkers: Detecting treatment-by-gene interaction in high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1275-1286.
    17. repec:dau:papers:123456789/13437 is not listed on IDEAS
    18. Han, Shengtong & Zhang, Hongmei & Karmaus, Wilfried & Roberts, Graham & Arshad, Hasan, 2017. "Adjusting background noise in cluster analyses of longitudinal data," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 93-104.
    19. Ahmed Hossain & Hafiz T.A. Khan, 2016. "Identification of genomic markers correlated with sensitivity in solid tumors to Dasatinib using sparse principal components," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2538-2549, October.
    20. Guillermo Durand & Gilles Blanchard & Pierre Neuvial & Etienne Roquain, 2020. "Post hoc false positive control for structured hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1114-1148, December.
    21. Xiaoquan Wen, 2017. "Robust Bayesian FDR Control Using Bayes Factors, with Applications to Multi-tissue eQTL Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 28-49, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:strimo:v:25:y:2007:i:1/2007:p:21:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.