Detecting Differentially Expressed Genes in Microarrays Using Bayesian Model Selection
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Koop, Gary & Korobilis, Dimitris, 2016.
"Model uncertainty in Panel Vector Autoregressive models,"
European Economic Review, Elsevier, vol. 81(C), pages 115-131.
- Gary Koop & Dimitris Korobilis, 2014. "Model Uncertainty in Panel Vector Autoregressive Models," Working Paper series 39_14, Rimini Centre for Economic Analysis.
- Gary Koop & Dimitris Korobilis, 2015. "Model Uncertainty in Panel Vector Autoregressive Models," Working Paper series 15-35, Rimini Centre for Economic Analysis.
- Koop, Gary & Korobilis, Dimitris, 2014. "Model Uncertainty in Panel Vector Autoregressive Models," MPRA Paper 58131, University Library of Munich, Germany.
- Gary Koop & Dimitris Korobilis, 2014. "Model uncertainty in panel vector autoregressive models," Working Papers 1408, University of Strathclyde Business School, Department of Economics.
- Koop, Gary & Korobilis, Dimitris, 2014. "Model Uncertainty in Panel Vector Autoregressive Models," SIRE Discussion Papers 2014-011, Scottish Institute for Research in Economics (SIRE).
- Gary Koop & Dimitris Korobilis, 2014. "Model uncertainty in panel vector autoregressive models," Working Papers 2014_10, Business School - Economics, University of Glasgow.
- Bansal Naveen K., 2007. "Decision theoretic Bayesian hypothesis testing with the selection goal," Statistics & Risk Modeling, De Gruyter, vol. 25(1), pages 19-39, January.
- Cohen, Arthur & Sackrowitz, Harold B., 2007. "More on the inadmissibility of step-up," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 481-492, March.
- Dimitris Korobilis & Kenichi Shimizu, 2022.
"Bayesian Approaches to Shrinkage and Sparse Estimation,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
- Korobilis, Dimitris & Shimizu, Kenichi, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," MPRA Paper 111631, University Library of Munich, Germany.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
- Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Paper series 22-02, Rimini Centre for Economic Analysis.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Papers 2112.11751, arXiv.org.
- Dazard, Jean-Eudes & Sunil Rao, J., 2012. "Joint adaptive mean–variance regularization and variance stabilization of high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2317-2333.
- Montazeri Zahra & Yanofsky Corey M. & Bickel David R., 2010. "Shrinkage Estimation of Effect Sizes as an Alternative to Hypothesis Testing Followed by Estimation in High-Dimensional Biology: Applications to Differential Gene Expression," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
- HyungJun Cho & Jaewoo Kang & Jae Lee, 2009. "Empirical Bayes analysis of unreplicated microarray data," Computational Statistics, Springer, vol. 24(3), pages 393-408, August.
- Ishwaran, Hemant & Sunil Rao, J., 2008. "Clustering gene expression profile data by selective shrinkage," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1490-1497, September.
- Ishwaran, Hemant & Sunil Rao, J., 2011. "Consistency of spike and slab regression," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1920-1928.
- Guanhua Fang & Zhiliang Ying, 2020. "Latent Theme Dictionary Model for Finding Co-occurrent Patterns in Process Data," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 775-811, September.
- Wagner, Helga & Duller, Christine, 2012. "Bayesian model selection for logistic regression models with random intercept," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1256-1274.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:98:y:2003:p:438-455. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.