Determining the number of global and country-specific factors in the euro area
Author
Abstract
Suggested Citation
DOI: 10.1515/snde-2012-0031
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005.
"The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting,"
Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
- Lippi, Marco & Reichlin, Lucrezia & Hallin, Marc & Forni, Mario, 2002. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," CEPR Discussion Papers 3432, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2005. "The generalised dynamic factor model: one sided estimation and forecasting," ULB Institutional Repository 2013/10129, ULB -- Universite Libre de Bruxelles.
- Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2003. "The Generalized Dynamic Factor Model. One-Sided Estimation and Forecasting," LEM Papers Series 2003/13, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Forni M. & Hallin M., 2003. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Computing in Economics and Finance 2003 143, Society for Computational Economics.
- Jakob De Haan & Robert Inklaar & Richard Jong‐A‐Pin, 2008.
"Will Business Cycles In The Euro Area Converge? A Critical Survey Of Empirical Research,"
Journal of Economic Surveys, Wiley Blackwell, vol. 22(2), pages 234-273, April.
- Haan, Jakob de & Inklaar, Robert & Jong-A-Pin, Richard, 2005. "Will business cycles in the Euro Area converge : a critical survey of empirical research," CCSO Working Papers 200508, University of Groningen, CCSO Centre for Economic Research.
- James H. Stock & Mark W. Watson, 1993. "Business Cycles, Indicators, and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number stoc93-1, January.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012.
"A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models,"
The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
- Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "A quasi maximum likelihood approach for large approximate dynamic factor models," Working Paper Series 674, European Central Bank.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," Post-Print hal-00638440, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00638440, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) hal-00638440, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2008. "A Quasi Maximum Likelihood Approach for Large Approximate Dynamic Factor Models," Working Papers ECARES 2008_034, ULB -- Universite Libre de Bruxelles.
- Reichlin, Lucrezia & Doz, Catherine & Giannone, Domenico, 2006. "A Quasi Maximum Likelihood Approach for Large Approximate Dynamic Factor Models," CEPR Discussion Papers 5724, C.E.P.R. Discussion Papers.
- Chamberlain, Gary & Rothschild, Michael, 1983.
"Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets,"
Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
- Gary Chamberlain & Michael Rothschild, 1982. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," NBER Working Papers 0996, National Bureau of Economic Research, Inc.
- Chamberlain, Gary & Rothschild, Michael, 1982. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Scholarly Articles 3230355, Harvard University Department of Economics.
- Norrbin, Stefan C. & Schlagenhauf, Don E., 1996. "The role of international factors in the business cycle: A multi-country study," Journal of International Economics, Elsevier, vol. 40(1-2), pages 85-104, February.
- Boivin, Jean & Ng, Serena, 2006.
"Are more data always better for factor analysis?,"
Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
- Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
- Stock, James H. & Watson, Mark W. (ed.), 1993. "Business Cycles, Indicators, and Forecasting," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226774886, October.
- Roll, Richard & Ross, Stephen A, 1980. "An Empirical Investigation of the Arbitrage Pricing Theory," Journal of Finance, American Finance Association, vol. 35(5), pages 1073-1103, December.
- Giannone, Domenico & Reichlin, Lucrezia & Sala, Luca, 2006.
"VARs, common factors and the empirical validation of equilibrium business cycle models,"
Journal of Econometrics, Elsevier, vol. 132(1), pages 257-279, May.
- Reichlin, Lucrezia & Sala, Luca & Giannone, Domenico, 2002. "VARs, Common Factors and the Empirical Validation of Equilibrium Business Cycle Models," CEPR Discussion Papers 3701, C.E.P.R. Discussion Papers.
- Domenica Giannone & Lucrezia Reichlin & Luca Sala, 2004. "VARs, Common Factors and the Empirical Validation of Equilibrium Business Cycle Models," Working Papers 258, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2006. "VARs, common factors and the empirical validation of equilibrium business cycle models," ULB Institutional Repository 2013/10127, ULB -- Universite Libre de Bruxelles.
- M. Ayhan Kose & Christopher Otrok & Charles H. Whiteman, 2003. "International Business Cycles: World, Region, and Country-Specific Factors," American Economic Review, American Economic Association, vol. 93(4), pages 1216-1239, September.
- Massimiliano Marcellino & Carlo A. Favero & Francesca Neglia, 2005.
"Principal components at work: the empirical analysis of monetary policy with large data sets,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(5), pages 603-620.
- Carlo Ambrogio Favero & Massimilano Marcellino & Francesca Neglia, "undated". "Principal components at work: The empirical analysis of monetary policy with large datasets," Working Papers 223, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003.
"Macroeconomic forecasting in the Euro area: Country specific versus area-wide information,"
European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
- Massimiliano Marcellino & James H. Stock & Mark W. Watson, "undated". "Macroeconomic Forecasting in the Euro Area: Country Specific versus Area-Wide Information," Working Papers 201, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Amengual, Dante & Watson, Mark W., 2007. "Consistent Estimation of the Number of Dynamic Factors in a Large N and T Panel," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 91-96, January.
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005.
"Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the effects of monetary policy: a factor-augmented vector autoregressive (FAVAR) approach," Finance and Economics Discussion Series 2004-03, Board of Governors of the Federal Reserve System (U.S.).
- Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2004. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," NBER Working Papers 10220, National Bureau of Economic Research, Inc.
- Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Simon Freyaldenhoven, 2020. "Identification Through Sparsity in Factor Models," Working Papers 20-25, Federal Reserve Bank of Philadelphia.
- Choi, In & Lin, Rui & Shin, Yongcheol, 2023.
"Canonical correlation-based model selection for the multilevel factors,"
Journal of Econometrics, Elsevier, vol. 233(1), pages 22-44.
- In Choi & Rui Lin & Yongcheol Shin, 2020. "Canonical Correlation-based Model Selection for the Multilevel Factors," Working Papers 2008, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
- Simon Freyaldenhoven, 2017.
"A Generalized Factor Model with Local Factors,"
2017 Papers
pfr361, Job Market Papers.
- Simon Freyaldenhoven, 2019. "A Generalized Factor Model with Local Factors," Working Papers 19-23, Federal Reserve Bank of Philadelphia.
- In Choi & Dukpa Kim & Yun Jung Kim & Noh‐Sun Kwark, 2018.
"A multilevel factor model: Identification, asymptotic theory and applications,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 355-377, April.
- In Choi & Dukpa Kim & Yun Jung Kim & Noh-Sun Kwark, 2016. "A Multilevel Factor Model: Identification, Asymptotic Theory and Applications," Working Papers 1609, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
- Freyaldenhoven, Simon, 2022.
"Factor models with local factors — Determining the number of relevant factors,"
Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
- Simon Freyaldenhoven, 2021. "Factor Models with Local Factors—Determining the Number of Relevant Factors," Working Papers 21-15, Federal Reserve Bank of Philadelphia.
- Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
- Kim Dukpa & Kim Yunjung & Bak Yuhyeon, 2017. "Multi-level factor analysis of bond risk premia," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(5), pages 1-19, December.
- António Rua & Francisco Dias, 2020. "A non-hierarchical dynamic factor model for three-way data," Working Papers w202007, Banco de Portugal, Economics and Research Department.
- Byoungsoo Cho, 2020. "The Monetary Policy Reaction Function in Korea with Multi-level Factors," Korean Economic Review, Korean Economic Association, vol. 36, pages 353-376.
- Matteo Barigozzi & Marc Hallin & Stefano Soccorsi, 2017. "Identification of Global and National Shocks in International Financial Markets via General Dynamic Factor Models," Working Papers ECARES ECARES 2017-10, ULB -- Universite Libre de Bruxelles.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- António Rua & Francisco Craveiro Dias, 2008. "Determining the number of factors in approximate factor models with global and group-specific factors," Working Papers w200809, Banco de Portugal, Economics and Research Department.
- Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014.
"Dynamic factor models: A review of the literature,"
OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
- Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2013. "Dynamic factor models: A review of the literature," Post-Print hal-01385974, HAL.
- Barhoumi, K. & Darné, O. & Ferrara, L., 2013. "Dynamic Factor Models: A review of the Literature ," Working papers 430, Banque de France.
- Catherine Doz & Peter Fuleky, 2019.
"Dynamic Factor Models,"
Working Papers
halshs-02262202, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," Post-Print halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
- Forni, Mario & Cavicchioli, Maddalena & Lippi, Marco & Zaffaroni, Paolo, 2016. "Eigenvalue Ratio Estimators for the Number of Common Factors," CEPR Discussion Papers 11440, C.E.P.R. Discussion Papers.
- Helmut Lütkepohl, 2014.
"Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey,"
Discussion Papers of DIW Berlin
1351, DIW Berlin, German Institute for Economic Research.
- Lütkepohl, Helmut, 2014. "Structural vector autoregressive analysis in a data rich environment: A survey," SFB 649 Discussion Papers 2014-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- repec:hum:wpaper:sfb649dp2014-004 is not listed on IDEAS
- Rua, António, 2017.
"A wavelet-based multivariate multiscale approach for forecasting,"
International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
- António Rua, 2016. "A wavelet-based multivariate multiscale approach for forecasting," Working Papers w201612, Banco de Portugal, Economics and Research Department.
- Bork, Lasse, 2009.
"Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach,"
Finance Research Group Working Papers
F-2009-03, University of Aarhus, Aarhus School of Business, Department of Business Studies.
- Lasse Bork, 2009. "Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach," CREATES Research Papers 2009-11, Department of Economics and Business Economics, Aarhus University.
- Viktors Ajevskis & Gundars Davidsons, 2008. "Dynamic Factor Models in Forecasting Latvia's Gross Domestic Product," Working Papers 2008/02, Latvijas Banka.
- Mario Forni & Marc Hallin & Marco Lippi & Paolo Zaffaroni, 2011.
"One-Sided Representations of Generalized Dynamic Factor Models,"
Working Papers ECARES
ECARES 2011-019, ULB -- Universite Libre de Bruxelles.
- Mario Forni & Marc Hallin & Marco Lippi & Paolo Zaffaroni, 2011. "One-Sided Representations of Generalized Dynamic Factor Models," DSS Empirical Economics and Econometrics Working Papers Series 2011/5, Centre for Empirical Economics and Econometrics, Department of Statistics, "Sapienza" University of Rome.
- Mario Forni & Marc Hallin & Marco Lippi & Paolo Zaffaroni, 2011. "One-Sided Representations of Generalized Dynamic Factor Models," EIEF Working Papers Series 1106, Einaudi Institute for Economics and Finance (EIEF), revised Mar 2011.
- Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021.
"Factor extraction using Kalman filter and smoothing: This is not just another survey,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
- Poncela Blanco, Maria Pilar, 2020. "Factor extraction using Kalman filter and smoothing: this is not just another survey," DES - Working Papers. Statistics and Econometrics. WS 30644, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- George Kapetanios & Massimiliano Marcellino, 2009.
"A parametric estimation method for dynamic factor models of large dimensions,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 208-238, March.
- Marcellino, Massimiliano & Kapetanios, George, 2006. "A Parametric Estimation Method for Dynamic Factor Models of Large Dimensions," CEPR Discussion Papers 5620, C.E.P.R. Discussion Papers.
- Borus Jungbacker & Siem Jan Koopman, 2008. "Likelihood-based Analysis for Dynamic Factor Models," Tinbergen Institute Discussion Papers 08-007/4, Tinbergen Institute, revised 20 Mar 2014.
- Branimir, Jovanovic & Magdalena, Petrovska, 2010. "Forecasting Macedonian GDP: Evaluation of different models for short-term forecasting," MPRA Paper 43162, University Library of Munich, Germany.
- Pilar Poncela & Esther Ruiz, 2016.
"Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment,"
Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434,
Emerald Group Publishing Limited.
- Poncela, Pilar, 2015. "Small versus big-data factor extraction in Dynamic Factor Models: An empirical assessment," DES - Working Papers. Statistics and Econometrics. WS ws1502, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Marc Hallin & Roman Liska, 2008.
"Dynamic Factors in the Presence of Block Structure,"
Working Papers ECARES
2008_012, ULB -- Universite Libre de Bruxelles.
- Marc Hallin & Roman Liska, 2008. "Dynamic Factors in the Presence of Block Structure," Economics Working Papers ECO2008/22, European University Institute.
- Massimiliano Marcellino & George Kapetanios, 2006. "The Role of Search Frictions and Bargaining for Inflation Dynamics," Working Papers 305, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Branimir Jovanovic & Magdalena Petrovska, 2010. "Forecasting Macedonian GDP: Evaluation of different models for short-term forecasting," Working Papers 2010-02, National Bank of the Republic of North Macedonia, revised Aug 2010.
- Smeekes, Stephan & Wijler, Etienne, 2018.
"Macroeconomic forecasting using penalized regression methods,"
International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- Smeekes, Stephan & Wijler, Etiënne, 2016. "Macroeconomic Forecasting Using Penalized Regression Methods," Research Memorandum 039, Maastricht University, Graduate School of Business and Economics (GSBE).
More about this item
Keywords
euro area; factor models; global factors; group-specific factors; model selection criteria.; JEL classification: C32; C52;All these keywords.
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:17:y:2013:i:5:p:573-617:n:3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.