IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v8y2009i1n32.html
   My bibliography  Save this article

Estimation of Selection Intensity under Overdominance by Bayesian Methods

Author

Listed:
  • Buzbas Erkan Ozge

    (University of Idaho)

  • Joyce Paul

    (University of Idaho)

  • Abdo Zaid

    (University of Idaho)

Abstract

A balanced pattern in the allele frequencies of polymorphic loci is a potential sign of selection, particularly of overdominance. Although this type of selection is of some interest in population genetics, there exists no likelihood based approaches specifically tailored to make inference on selection intensity. To fill this gap, we present Bayesian methods to estimate selection intensity under k-allele models with overdominance. Our model allows for an arbitrary number of loci and alleles within a locus. The neutral and selected variability within each locus are modeled with corresponding k-allele models. To estimate the posterior distribution of the mean selection intensity in a multilocus region, a hierarchical setup between loci is used. The methods are demonstrated with data at the Human Leukocyte Antigen loci from world-wide populations.

Suggested Citation

  • Buzbas Erkan Ozge & Joyce Paul & Abdo Zaid, 2009. "Estimation of Selection Intensity under Overdominance by Bayesian Methods," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-24, June.
  • Handle: RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:32
    DOI: 10.2202/1544-6115.1466
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1466
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1466?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Damlen & J. Wakefield & S. Walker, 1999. "Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 331-344, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferguson, Jake M. & Buzbas, Erkan Ozge, 2018. "Inference from the stationary distribution of allele frequencies in a family of Wright–Fisher models with two levels of genetic variability," Theoretical Population Biology, Elsevier, vol. 122(C), pages 78-87.
    2. Steinrücken, Matthias & Wang, Y.X. Rachel & Song, Yun S., 2013. "An explicit transition density expansion for a multi-allelic Wright–Fisher diffusion with general diploid selection," Theoretical Population Biology, Elsevier, vol. 83(C), pages 1-14.
    3. Buzbas, Erkan Ozge & Joyce, Paul & Rosenberg, Noah A., 2011. "Inference on the strength of balancing selection for epistatically interacting loci," Theoretical Population Biology, Elsevier, vol. 79(3), pages 102-113.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen G. Walker, 2006. "Sampling the Dirichlet Mixture Model with Slices," ICER Working Papers - Applied Mathematics Series 16-2006, ICER - International Centre for Economic Research.
    2. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    3. Marcin Kacperczyk & Paul Damien & Stephen G. Walker, 2013. "A new class of Bayesian semi-parametric models with applications to option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 967-980, May.
    4. Saeede Ajorlou & Issac Shams & Kai Yang, 2015. "An analytics approach to designing patient centered medical homes," Health Care Management Science, Springer, vol. 18(1), pages 3-18, March.
    5. Ho, Chi-san & Damien, Paul & Walker, Stephen, 2017. "Bayesian mode regression using mixtures of triangular densities," Journal of Econometrics, Elsevier, vol. 197(2), pages 273-283.
    6. Seongil Jo & Taeyoung Roh & Taeryon Choi, 2016. "Bayesian spectral analysis models for quantile regression with Dirichlet process mixtures," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 177-206, March.
    7. Hatjispyros, Spyridon J. & Nicoleris, Theodoros & Walker, Stephen G., 2009. "A Bayesian nonparametric study of a dynamic nonlinear model," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3948-3956, October.
    8. HOOGERHEIDE, Lennart F. & VAN DIJK, Herman K. & VAN OEST, Rutger D., 2007. "Simulation based Bayesian econometric inference: principles and some recent computational advances," LIDAM Discussion Papers CORE 2007015, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Ausín, M. Concepción & Galeano, Pedro & Ghosh, Pulak, 2014. "A semiparametric Bayesian approach to the analysis of financial time series with applications to value at risk estimation," European Journal of Operational Research, Elsevier, vol. 232(2), pages 350-358.
    10. Shively, Thomas S. & Walker, Stephen G. & Damien, Paul, 2011. "Nonparametric function estimation subject to monotonicity, convexity and other shape constraints," Journal of Econometrics, Elsevier, vol. 161(2), pages 166-181, April.
    11. Stephen Walker, 1999. "The uniform power distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(4), pages 509-517.
    12. Li, Yanxin & Walker, Stephen G., 2023. "A latent slice sampling algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    13. Ghosal, Rahul & Ghosh, Sujit K., 2022. "Bayesian inference for generalized linear model with linear inequality constraints," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    14. Paap, Richard & van Nierop, Erjen & van Heerde, Harald J. & Wedel, Michel & Franses, Philip Hans & Alsem, Karel Jan, 2005. "Consideration sets, intentions and the inclusion of "don't know" in a two-stage model for voter choice," International Journal of Forecasting, Elsevier, vol. 21(1), pages 53-71.
    15. Daziano, Ricardo A., 2013. "Conditional-logit Bayes estimators for consumer valuation of electric vehicle driving range," Resource and Energy Economics, Elsevier, vol. 35(3), pages 429-450.
    16. Bruno J.D. Jacobs & Bas Donkers & Dennis Fok, 2016. "Model-Based Purchase Predictions for Large Assortments," Marketing Science, INFORMS, vol. 35(3), pages 389-404, May.
    17. Ralf van der Lans & Rik Pieters & Michel Wedel, 2008. "—Competitive Brand Salience," Marketing Science, INFORMS, vol. 27(5), pages 922-931, 09-10.
    18. Dani Gamerman & Ajax R. B. Moreira, 2015. "Multivariate Spatial Regression Models," Discussion Papers 0116, Instituto de Pesquisa Econômica Aplicada - IPEA.
    19. Hoogerheide, Lennart F. & Kaashoek, Johan F. & van Dijk, Herman K., 2007. "On the shape of posterior densities and credible sets in instrumental variable regression models with reduced rank: An application of flexible sampling methods using neural networks," Journal of Econometrics, Elsevier, vol. 139(1), pages 154-180, July.
    20. Chib, Siddhartha, 2004. "Markov Chain Monte Carlo Technology," Papers 2004,22, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:8:y:2009:i:1:n:32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.