IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v19y2020i4-6p12n2.html
   My bibliography  Save this article

Combining dependent p-values by gamma distributions

Author

Listed:
  • Chien Li-Chu

    (Center for Fundamental Science, Kaohsiung Medical University, Kaohsiung, Taiwan)

Abstract

Combining correlated p-values from multiple hypothesis testing is a most frequently used method for integrating information in genetic and genomic data analysis. However, most existing methods for combining independent p-values from individual component problems into a single unified p-value are unsuitable for the correlational structure among p-values from multiple hypothesis testing. Although some existing p-value combination methods had been modified to overcome the potential limitations, there is no uniformly most powerful method for combining correlated p-values in genetic data analysis. Therefore, providing a p-value combination method that can robustly control type I errors and keep the good power rates is necessary. In this paper, we propose an empirical method based on the gamma distribution (EMGD) for combining dependent p-values from multiple hypothesis testing. The proposed test, EMGD, allows for flexible accommodating the highly correlated p-values from the multiple hypothesis testing into a unified p-value for examining the combined hypothesis that we are interested in. The EMGD retains the robustness character of the empirical Brown’s method (EBM) for pooling the dependent p-values from multiple hypothesis testing. Moreover, the EMGD keeps the character of the method based on the gamma distribution that simultaneously retains the advantages of the z-transform test and the gamma-transform test for combining dependent p-values from multiple statistical tests. The two characters lead to the EMGD that can keep the robust power for combining dependent p-values from multiple hypothesis testing. The performance of the proposed method EMGD is illustrated with simulations and real data applications by comparing with the existing methods, such as Kost and McDermott’s method, the EBM and the harmonic mean p-value method.

Suggested Citation

  • Chien Li-Chu, 2020. "Combining dependent p-values by gamma distributions," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(4-6), pages 1-12, December.
  • Handle: RePEc:bpj:sagmbi:v:19:y:2020:i:4-6:p:12:n:2
    DOI: 10.1515/sagmb-2019-0057
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2019-0057
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2019-0057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gelio Alves & Yi-Kuo Yu, 2014. "Accuracy Evaluation of the Unified P-Value from Combining Correlated P-Values," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    2. Loughin, Thomas M., 2004. "A systematic comparison of methods for combining p-values from independent tests," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 467-485, October.
    3. Kost, James T. & McDermott, Michael P., 2002. "Combining dependent P-values," Statistics & Probability Letters, Elsevier, vol. 60(2), pages 183-190, November.
    4. Gelio Alves & Yi-Kuo Yu, 2011. "Combining Independent, Weighted P-Values: Achieving Computational Stability by a Systematic Expansion with Controllable Accuracy," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-8, August.
    5. Li-Chu Chien, 2019. "A method for combining -values in meta-analysis by gamma distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(2), pages 247-261, January.
    6. Chen, Zhongxue & Nadarajah, Saralees, 2014. "On the optimally weighted z-test for combining probabilities from independent studies," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 387-394.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaqiong Wang & Yalu Wen, 2020. "A Systematic Comparison of Methods Designed for Association Analysis with Multi-Omics Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 10(2), pages 30-40, August.
    2. Chen, Zhongxue & Huang, Hanwen & Ng, Hon Keung Tony, 2014. "An improved robust association test for GWAS with multiple diseases," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 153-161.
    3. Marco Marozzi, 2012. "A combined test for differences in scale based on the interquantile range," Statistical Papers, Springer, vol. 53(1), pages 61-72, February.
    4. Alexander Kaever & Manuel Landesfeind & Kirstin Feussner & Burkhard Morgenstern & Ivo Feussner & Peter Meinicke, 2014. "Meta-Analysis of Pathway Enrichment: Combining Independent and Dependent Omics Data Sets," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    5. Lan Cheng & Xuguang Simon Sheng, 2017. "Combination of “combinations of p values”," Empirical Economics, Springer, vol. 53(1), pages 329-350, August.
    6. Arie Shaus & Yana Gerber & Shira Faigenbaum-Golovin & Barak Sober & Eli Piasetzky & Israel Finkelstein, 2020. "Forensic document examination and algorithmic handwriting analysis of Judahite biblical period inscriptions reveal significant literacy level," PLOS ONE, Public Library of Science, vol. 15(9), pages 1-15, September.
    7. Xuguang Sheng & Jingyun Yang, 2013. "Truncated Product Methods for Panel Unit Root Tests," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(4), pages 624-636, August.
    8. Julian Frank & Bernhard Klar, 2016. "Methods to test for equality of two normal distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(4), pages 581-599, November.
    9. Kojadinovic, Ivan, 2010. "Hierarchical clustering of continuous variables based on the empirical copula process and permutation linkages," Computational Statistics & Data Analysis, Elsevier, vol. 54(1), pages 90-108, January.
    10. Doyle, John R. & Chen, Catherine H., 2013. "Patterns in stock market movements tested as random number generators," European Journal of Operational Research, Elsevier, vol. 227(1), pages 122-132.
    11. Chen Zhongxue & Han Shizhong & Wang Kai, 2017. "Genetic association test based on principal component analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(3), pages 189-198, August.
    12. Gelio Alves & Yi-Kuo Yu, 2014. "Accuracy Evaluation of the Unified P-Value from Combining Correlated P-Values," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    13. Yoav Benjamini & Ruth Heller, 2008. "Screening for Partial Conjunction Hypotheses," Biometrics, The International Biometric Society, vol. 64(4), pages 1215-1222, December.
    14. Hong Zhang & Zheyang Wu, 2023. "The generalized Fisher's combination and accurate p‐value calculation under dependence," Biometrics, The International Biometric Society, vol. 79(2), pages 1159-1172, June.
    15. Holm, Hakan J. & Samahita, Margaret, 2018. "Curating social image: Experimental evidence on the value of actions and selfies," Journal of Economic Behavior & Organization, Elsevier, vol. 148(C), pages 83-104.
    16. Marot Guillemette & Mayer Claus-Dieter, 2009. "Sequential Analysis for Microarray Data Based on Sensitivity and Meta-Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-35, January.
    17. Jai Won Choi & Balgobin Nandram & Boseung Choi, 2022. "Combining Correlated P-values From Primary Data Analyses," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 11(6), pages 1-12, November.
    18. Kechris Katerina J & Biehs Brian & Kornberg Thomas B, 2010. "Generalizing Moving Averages for Tiling Arrays Using Combined P-Value Statistics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-31, August.
    19. Chen, Zhongxue & Nadarajah, Saralees, 2014. "On the optimally weighted z-test for combining probabilities from independent studies," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 387-394.
    20. Oliver M. Crook & Colin T. R. Davies & Lisa M. Breckels & Josie A. Christopher & Laurent Gatto & Paul D. W. Kirk & Kathryn S. Lilley, 2022. "Inferring differential subcellular localisation in comparative spatial proteomics using BANDLE," Nature Communications, Nature, vol. 13(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:19:y:2020:i:4-6:p:12:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.