IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v19y2020i1p11n2.html
   My bibliography  Save this article

An extended model for phylogenetic maximum likelihood based on discrete morphological characters

Author

Listed:
  • Spade David A.

    (University of Wisconsin Milwaukee, Mathematical Sciences, EMS Building Room 403, 3200 Cramer Street, Milwaukee, WI, USA)

Abstract

Maximum likelihood is a common method of estimating a phylogenetic tree based on a set of genetic data. However, models of evolution for certain types of genetic data are highly flawed in their specification, and this misspecification can have an adverse impact on phylogenetic inference. Our attention here is focused on extending an existing class of models for estimating phylogenetic trees from discrete morphological characters. The main advance of this work is a model that allows unequal equilibrium frequencies in the estimation of phylogenetic trees from discrete morphological character data using likelihood methods. Possible extensions of the proposed model will also be discussed.

Suggested Citation

  • Spade David A., 2020. "An extended model for phylogenetic maximum likelihood based on discrete morphological characters," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(1), pages 1-11, February.
  • Handle: RePEc:bpj:sagmbi:v:19:y:2020:i:1:p:11:n:2
    DOI: 10.1515/sagmb-2019-0029
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2019-0029
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2019-0029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthew Stephens & Peter Donnelly, 2000. "Inference in molecular population genetics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 605-635.
    2. April M Wright & David M Hillis, 2014. "Bayesian Analysis Using a Simple Likelihood Model Outperforms Parsimony for Estimation of Phylogeny from Discrete Morphological Data," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-6, October.
    3. Bob Mau & Michael A. Newton & Bret Larget, 1999. "Bayesian Phylogenetic Inference via Markov Chain Monte Carlo Methods," Biometrics, The International Biometric Society, vol. 55(1), pages 1-12, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikula, Lynette Caitlin & Vogl, Claus, 2024. "The expected sample allele frequencies from populations of changing size via orthogonal polynomials," Theoretical Population Biology, Elsevier, vol. 157(C), pages 55-85.
    2. Griffiths, Robert C. & Tavaré, Simon, 2018. "Ancestral inference from haplotypes and mutations," Theoretical Population Biology, Elsevier, vol. 122(C), pages 12-21.
    3. Barry G Hall & Stephen J Salipante, 2007. "Measures of Clade Confidence Do Not Correlate with Accuracy of Phylogenetic Trees," PLOS Computational Biology, Public Library of Science, vol. 3(3), pages 1-9, March.
    4. Steinrücken, Matthias & Paul, Joshua S. & Song, Yun S., 2013. "A sequentially Markov conditional sampling distribution for structured populations with migration and recombination," Theoretical Population Biology, Elsevier, vol. 87(C), pages 51-61.
    5. Birkner, Matthias & Blath, Jochen & Steinrücken, Matthias, 2011. "Importance sampling for Lambda-coalescents in the infinitely many sites model," Theoretical Population Biology, Elsevier, vol. 79(4), pages 155-173.
    6. Larribe Fabrice & Lessard Sabin, 2008. "A Composite-Conditional-Likelihood Approach for Gene Mapping Based on Linkage Disequilibrium in Windows of Marker Loci," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-33, August.
    7. Blath, Jochen & Buzzoni, Eugenio & Koskela, Jere & Wilke Berenguer, Maite, 2020. "Statistical tools for seed bank detection," Theoretical Population Biology, Elsevier, vol. 132(C), pages 1-15.
    8. Ian J. Wilson & Michael E. Weale & David J. Balding, 2003. "Inferences from DNA data: population histories, evolutionary processes and forensic match probabilities," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 166(2), pages 155-188, June.
    9. Alexandra Gavryushkina & David Welch & Tanja Stadler & Alexei J Drummond, 2014. "Bayesian Inference of Sampled Ancestor Trees for Epidemiology and Fossil Calibration," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-15, December.
    10. Uyenoyama, Marcy K. & Takebayashi, Naoki & Kumagai, Seiji, 2020. "Allele frequency spectra in structured populations: Novel-allele probabilities under the labelled coalescent," Theoretical Population Biology, Elsevier, vol. 133(C), pages 130-140.
    11. Elena Rivas & Sean R Eddy, 2008. "Probabilistic Phylogenetic Inference with Insertions and Deletions," PLOS Computational Biology, Public Library of Science, vol. 4(9), pages 1-21, September.
    12. Neil Brocklehurst & Robert R Reisz & Vincent Fernandez & Jörg Fröbisch, 2016. "A Re-Description of ‘Mycterosaurus’ smithae, an Early Permian Eothyridid, and Its Impact on the Phylogeny of Pelycosaurian-Grade Synapsids," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-27, June.
    13. Lin, Yu-Min & Fang, Shu-Cherng & Thorne, Jeffrey L., 2007. "A tabu search algorithm for maximum parsimony phylogeny inference," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1908-1917, February.
    14. Hössjer Ola & Hartman Linda & Humphreys Keith, 2009. "Ancestral Recombination Graphs under Non-Random Ascertainment, with Applications to Gene Mapping," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-46, September.
    15. Tiago R Simões & Oksana Vernygora & Ilaria Paparella & Paulina Jimenez-Huidobro & Michael W Caldwell, 2017. "Mosasauroid phylogeny under multiple phylogenetic methods provides new insights on the evolution of aquatic adaptations in the group," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-20, May.
    16. Vogl, Claus & Mikula, Lynette C. & Burden, Conrad J., 2020. "Maximum likelihood estimators for scaled mutation rates in an equilibrium mutation–drift model," Theoretical Population Biology, Elsevier, vol. 134(C), pages 106-118.
    17. Johndrow, James E. & Palacios, Julia A., 2019. "Exact limits of inference in coalescent models," Theoretical Population Biology, Elsevier, vol. 125(C), pages 75-93.
    18. Rigat, F. & Mira, A., 2012. "Parallel hierarchical sampling: A general-purpose interacting Markov chains Monte Carlo algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1450-1467.
    19. Merle, C. & Leblois, R. & Rousset, F. & Pudlo, P., 2017. "Resampling: An improvement of importance sampling in varying population size models," Theoretical Population Biology, Elsevier, vol. 114(C), pages 70-87.
    20. Jordan Douglas & Rong Zhang & Remco Bouckaert, 2021. "Adaptive dating and fast proposals: Revisiting the phylogenetic relaxed clock model," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-30, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:19:y:2020:i:1:p:11:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.