IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v16y2017i4p259-273n3.html
   My bibliography  Save this article

Confidence intervals for heritability via Haseman-Elston regression

Author

Listed:
  • Sofer Tamar

    (University of Washington – Biostatistics UW Tower, 15th Floor 4333 Brooklyn Ave. NE, Seattle, WA 98105, USA)

Abstract

Heritability is the proportion of phenotypic variance in a population that is attributable to individual genotypes. Heritability is considered an important measure in both evolutionary biology and in medicine, and is routinely estimated and reported in genetic epidemiology studies. In population-based genome-wide association studies (GWAS), mixed models are used to estimate variance components, from which a heritability estimate is obtained. The estimated heritability is the proportion of the model’s total variance that is due to the genetic relatedness matrix (kinship measured from genotypes). Current practice is to use bootstrapping, which is slow, or normal asymptotic approximation to estimate the precision of the heritability estimate; however, this approximation fails to hold near the boundaries of the parameter space or when the sample size is small. In this paper we propose to estimate variance components via a Haseman-Elston regression, find the asymptotic distribution of the variance components and proportions of variance, and use them to construct confidence intervals (CIs). Our method is further developed to obtain unbiased variance components estimators and construct CIs by meta-analyzing information from multiple studies. We demonstrate our approach on data from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL).

Suggested Citation

  • Sofer Tamar, 2017. "Confidence intervals for heritability via Haseman-Elston regression," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(4), pages 259-273, September.
  • Handle: RePEc:bpj:sagmbi:v:16:y:2017:i:4:p:259-273:n:3
    DOI: 10.1515/sagmb-2016-0076
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2016-0076
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2016-0076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duchesne, Pierre & Lafaye De Micheaux, Pierre, 2010. "Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 858-862, April.
    2. Burch, Brent D., 2011. "Assessing the performance of normal-based and REML-based confidence intervals for the intraclass correlation coefficient," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1018-1028, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiménez-Gamero, M.D. & Alba-Fernández, M.V. & Jodrá, P. & Barranco-Chamorro, I., 2017. "Fast tests for the two-sample problem based on the empirical characteristic function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 137(C), pages 390-410.
    2. Pötscher, Benedikt M. & Preinerstorfer, David, 2021. "Valid Heteroskedasticity Robust Testing," MPRA Paper 107420, University Library of Munich, Germany.
    3. David Lamparter & Daniel Marbach & Rico Rueedi & Zoltán Kutalik & Sven Bergmann, 2016. "Fast and Rigorous Computation of Gene and Pathway Scores from SNP-Based Summary Statistics," PLOS Computational Biology, Public Library of Science, vol. 12(1), pages 1-20, January.
    4. Ghiglietti, Andrea & Paganoni, Anna Maria, 2017. "Exact tests for the means of Gaussian stochastic processes," Statistics & Probability Letters, Elsevier, vol. 131(C), pages 102-107.
    5. Sanae Rujivan & Athinan Sutchada & Kittisak Chumpong & Napat Rujeerapaiboon, 2023. "Analytically Computing the Moments of a Conic Combination of Independent Noncentral Chi-Square Random Variables and Its Application for the Extended Cox–Ingersoll–Ross Process with Time-Varying Dimens," Mathematics, MDPI, vol. 11(5), pages 1-29, March.
    6. Roberto Colombi & Sabrina Giordano, 2019. "Likelihood-based tests for a class of misspecified finite mixture models for ordinal categorical data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1175-1202, December.
    7. Colombi, Roberto, 2020. "Selection tests for possibly misspecified hierarchical multinomial marginal models," Econometrics and Statistics, Elsevier, vol. 16(C), pages 136-147.
    8. Li, Muyi & Zhang, Yanfen, 2022. "Bootstrapping multivariate portmanteau tests for vector autoregressive models with weak assumptions on errors," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    9. Salcedo, Gladys E. & Porto, Rogério F. & Morettin, Pedro A., 2012. "Comparing non-stationary and irregularly spaced time series," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3921-3934.
    10. Weichen Wu & Nynke Niezink & Brian Junker, 2022. "A diagnostic framework for the Bradley–Terry model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S2), pages 461-484, December.
    11. Ryo Miyazaki & Hidetoshi Murakami, 2020. "The non-null limiting distribution of the generalized Baumgartner statistic based on the Fourier series approximation," Statistical Papers, Springer, vol. 61(5), pages 1893-1909, October.
    12. G. I. Rivas-Martínez & M. D. Jiménez-Gamero & J. L. Moreno-Rebollo, 2019. "A two-sample test for the error distribution in nonparametric regression based on the characteristic function," Statistical Papers, Springer, vol. 60(4), pages 1369-1395, August.
    13. Marco Riani & Andrea Cerioli & Domenico Perrotta & Francesca Torti, 2015. "Simulating mixtures of multivariate data with fixed cluster overlap in FSDA library," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(4), pages 461-481, December.
    14. Anton Rask Lundborg & Rajen D. Shah & Jonas Peters, 2022. "Conditional independence testing in Hilbert spaces with applications to functional data analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1821-1850, November.
    15. Peng, Qidi & Schellhorn, Henry, 2018. "On the distribution of extended CIR model," Statistics & Probability Letters, Elsevier, vol. 142(C), pages 23-29.
    16. Fan, Yanan & de Micheaux, Pierre Lafaye & Penev, Spiridon & Salopek, Donna, 2017. "Multivariate nonparametric test of independence," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 189-210.
    17. Rasmus Erlemann & Richard Lockhart & Rihan Yao, 2022. "Cramér‐von Mises tests for change points," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 802-830, June.
    18. Christian H. Weiß, 2018. "Goodness-of-fit testing of a count time series’ marginal distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 619-651, August.
    19. Seri, Raffaello, 2022. "Computing the asymptotic distribution of second-order U- and V-statistics," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    20. Leão, Dorival & Ohashi, Alberto, 2012. "On the Discrete Cramér-von Mises Statistics under Random Censorship," Insper Working Papers wpe_275, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:16:y:2017:i:4:p:259-273:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.