Binary Markov Random Fields and interpretable mass spectra discrimination
Author
Abstract
Suggested Citation
DOI: 10.1515/sagmb-2016-0019
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ruedi Aebersold & Matthias Mann, 2003. "Mass spectrometry-based proteomics," Nature, Nature, vol. 422(6928), pages 198-207, March.
- Datta Somnath, 2008. "Classification of Breast Cancer versus Normal Samples from Mass Spectrometry Profiles Using Linear Discriminant Analysis of Important Features Selected by Random Forest," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(2), pages 1-14, February.
- Samir M. Hanash & Sharon J. Pitteri & Vitor M. Faca, 2008. "Mining the plasma proteome for cancer biomarkers," Nature, Nature, vol. 452(7187), pages 571-579, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jinfeng Zou & Guini Hong & Xinwu Guo & Lin Zhang & Chen Yao & Jing Wang & Zheng Guo, 2011. "Reproducible Cancer Biomarker Discovery in SELDI-TOF MS Using Different Pre-Processing Algorithms," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-9, October.
- Kertcher, Zack & Venkatraman, Rohan & Coslor, Erica, 2020. "Pleasingly parallel: Early cross-disciplinary work for innovation diffusion across boundaries in grid computing," Journal of Business Research, Elsevier, vol. 116(C), pages 581-594.
- Naomi S Hachiya, 2017. "Unfoldin, A Novel Tool for the Analysis of Protein Misfolding or Neurodegenerative Diseases," Open Access Journal of Neurology & Neurosurgery, Juniper Publishers Inc., vol. 6(3), pages 40-44, October.
- Alexander Kaever & Manuel Landesfeind & Kirstin Feussner & Burkhard Morgenstern & Ivo Feussner & Peter Meinicke, 2014. "Meta-Analysis of Pathway Enrichment: Combining Independent and Dependent Omics Data Sets," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
- Dayle L Sampson & Tony J Parker & Zee Upton & Cameron P Hurst, 2011. "A Comparison of Methods for Classifying Clinical Samples Based on Proteomics Data: A Case Study for Statistical and Machine Learning Approaches," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-11, September.
- Jiang Tan & Hui-Zhen Fu & Yuh-Shan Ho, 2014. "A bibliometric analysis of research on proteomics in Science Citation Index Expanded," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1473-1490, February.
- Jacques Colinge & Keiryn L Bennett, 2007. "Introduction to Computational Proteomics," PLOS Computational Biology, Public Library of Science, vol. 3(7), pages 1-10, July.
- Guler, Arzu Tugce & Waaijer, Cathelijn J.F. & Mohammed, Yassene & Palmblad, Magnus, 2016. "Automating bibliometric analyses using Taverna scientific workflows: A tutorial on integrating Web Services," Journal of Informetrics, Elsevier, vol. 10(3), pages 830-841.
- Lei Xin & Rui Qiao & Xin Chen & Hieu Tran & Shengying Pan & Sahar Rabinoviz & Haibo Bian & Xianliang He & Brenton Morse & Baozhen Shan & Ming Li, 2022. "A streamlined platform for analyzing tera-scale DDA and DIA mass spectrometry data enables highly sensitive immunopeptidomics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Tianhai Tian & Jiangning Song, 2012. "Mathematical Modelling of the MAP Kinase Pathway Using Proteomic Datasets," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-12, August.
- Mertens, B.J.A. & van der Burgt, Y.E.M. & Velstra, B. & Mesker, W.E. & Tollenaar, R.A.E.M. & Deelder, A.M., 2011. "On the use of double cross-validation for the combination of proteomic mass spectral data for enhanced diagnosis and prediction," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 759-766, July.
- Yun Xu & Wolfgang Schrader, 2021. "Studying the Complexity of Biomass Derived Biofuels," Energies, MDPI, vol. 14(8), pages 1-13, April.
- Karsten Suhre & Guhan Ram Venkataraman & Harendra Guturu & Anna Halama & Nisha Stephan & Gaurav Thareja & Hina Sarwath & Khatereh Motamedchaboki & Margaret K. R. Donovan & Asim Siddiqui & Serafim Batz, 2024. "Nanoparticle enrichment mass-spectrometry proteomics identifies protein-altering variants for precise pQTL mapping," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- ?uksza Marta & Kluge Bogus?aw & Ostrowski Jerzy & Karczmarski Jakub & Gambin Anna, 2009. "Two-Stage Model-Based Clustering for Liquid Chromatography Mass Spectrometry Data Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-36, February.
- Patrick Leopold Rüther & Immanuel Mirnes Husic & Pernille Bangsgaard & Kristian Murphy Gregersen & Pernille Pantmann & Milena Carvalho & Ricardo Miguel Godinho & Lukas Friedl & João Cascalheira & Albe, 2022. "SPIN enables high throughput species identification of archaeological bone by proteomics," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
- Gutiérrez, Luis & Gutiérrez-Peña, Eduardo & Mena, Ramsés H., 2014. "Bayesian nonparametric classification for spectroscopy data," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 56-68.
- Xiaohong Li & Patricia L Blount & Thomas L Vaughan & Brian J Reid, 2011. "Application of Biomarkers in Cancer Risk Management: Evaluation from Stochastic Clonal Evolutionary and Dynamic System Optimization Points of View," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-7, February.
- Yan Li & Bing Wang & Wentao Yang & Fahan Ma & Jianling Zou & Kai Li & Subei Tan & Jinwen Feng & Yunzhi Wang & Zhaoyu Qin & Zhiyu Chen & Chen Ding, 2024. "Longitudinal plasma proteome profiling reveals the diversity of biomarkers for diagnosis and cetuximab therapy response of colorectal cancer," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
- Ling Li & Mingming Niu & Alyssa Erickson & Jie Luo & Kincaid Rowbotham & Kai Guo & He Huang & Yuxin Li & Yi Jiang & Junguk Hur & Chunyu Liu & Junmin Peng & Xusheng Wang, 2022. "SMAP is a pipeline for sample matching in proteogenomics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Brar, D.S. & Mackill, D.J. & Hardy, Bill (ed.), 2007. "Rice Genetics V- Proceedings of the Fifth International Rice Genetics Symposium," IRRI Books, International Rice Research Institute (IRRI), number 164486.
More about this item
Keywords
biomarker signature discovery; Gibbs distributions; MALDI/SELDI data; Markov Random Fields; ovarian/colorectal cancer;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:16:y:2017:i:1:p:13-30:n:2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.